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State Space Models

The most general form to write linear models is as state space
systems

Xt = AtXt−1 + Ctut : ut ∼ N(0, I ) (state equation)

Zt = DtXt + vt : vt ∼ N(0,Σv ) (measurement equation)

Nests “observable” VAR(p), MA(p) and VARMA(p,q) processes as
well as systems with latent variables.



State Space Models: Examples

The VAR(p) model

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−1 + ut

can be written as

Xt = AtXt−1 + Ctut

Zt = DtXt + vt

where

A =


φ1 φ2 · · · φp
I 0 0

0
. . .

. . .

0 0 I 0

 ,C =


I
0
0
0

 ut

D =
[
I 0 · · · 0

]
,Σvv = 0



MA(1) in State Space Form

The MA(1) process

yt = εt + θεt−1

can be written as

[
εt
εt−1

]
=

[
0 0
1 0

] [
εt−1

εt−2

]
+

[
1
0

]
εt

yt =
[

1 θ
] [ εt

εt−1

]
which is also of the form

Xt = AtXt−1 + Ctut

Zt = DtXt + vt



Alternative state space representations

Sometimes there are more than one state space representation of a
given system: But are both[

εt
εt−1

]
=

[
0 0
1 0

] [
εt−1

εt−2

]
+

[
1
0

]
εt

yt =
[

1 θ
]

and [
εt
εt−1

]
=

[
0 0
0 0

] [
εt−1

εt−2

]
+

[
εt
εt−1

]
yt =

[
1 θ

]
valid state space representations of an MA(1) process?



The Kalman Filter



The Kalman Filter

The Kalman filter is used for mainly two purposes:

1. To estimate the unobservable state Xt

2. To evaluate the likelihood function associated with a state
space model



The Kalman Filter

For state space systems of the form

Xt = AtXt−1 + Ctut

Zt = DtXt + vt

the Kalman filter recursively computes estimates of Xt conditional
on the history of observations Zt ,Zt−1, ...Z0 and an initial
estimate (or prior) X0|0 with variance P0|0.
The form of the filter is

Xt|t = AtXt−1|t−1 + Kt

(
Zt − DtXt|t−1

)
and the task is thus to find the Kalman gain Kt so that the
estimates Xt|t are in some sense “optimal”.



Notation

Define
Xt|t−s ≡ E [Xt | Z t−s ]

and

Pt|t−s ≡ E (Xt − Xt|t−s)(Xt − Xt|t−s)′



A Simple Example



A Simple Example

Let’s say that we have a noisy measures z1 of the unobservable
process x so that

z1 = x + v1

v1 ∼ N(0, σ2
1)

Since the signal is unbiased, the minimum variance estimate
E
[
x | z1

]
≡ x̂ of x is simply given by

x̂ = z1

and its variance is equal to the variance of the noise

E [x̂ − x ]2 = σ2
1



Introducing a second signal

Now, let’s say we have an second measure z2 of x so that

z2 = x + v2

v2 ∼ N(0, σ2
2)

How can we combine the information in the two signals to find the
a minimum variance estimate of x?

If we restrict ourselves to linear estimators of the form

x̂ = (1− a) z1 + az2

we can simply minimize

E [(1− a) z1 + az2 − x ]2

with respect to a.



Minimizing the variance

Rewrite expression for variance as

E [(1− a) (x + v1) + a (x + v2)− x ]2

= E [(1− a) v1 + av2]2

= σ2
1 − 2aσ2

1 + a2σ2
1 + a2σ2

2

where the third line follows from the fact that v1 and v2 are
uncorrelated so all expected cross terms are zero. Differentiate
w.r.t. a and set equal to zero

−2σ2
1 + 2aσ2

1 + 2aσ2
2 = 0

and solve for a
a = σ2

1/(σ2
1 + σ2

2)



The minimum variance estimate of x

The minimum variance estimate of x is thus given by

x̂ =
σ2

2

σ2
1 + σ2

2

z1 +
σ2

1

σ2
1 + σ2

2

z2

with conditional variance

E [x̂ − x ]2 =

(
1

σ2
1

+
1

σ2
2

)−1

For σ2
2 <∞ we have that(

1

σ2
1

+
1

σ2
2

)−1

< σ2
1

so we get a better estimate with two signals.



The Scalar Filter



The Scalar Filter

Consider the process

xt = ρxt−1 + ut

zt = xt + vt[
ut
vt

]
∼ N

(
0,

[
σ2
u 0

0 σ2
v

])
We want to form an estimate of xt conditional on
z t = {zt , zt−1,...,z1} .
In addition to the knowledge of the state space system above we
have a “prior” knowledge about the initial value of the state x0 so
that

x0|0 = x0

E (x0 − x0)2 = p0

With this information we can form a prior about x1.



The scalar filter cont’d.

Using the state transition equation we get

x1|0 ≡ E
[
x1 | x0|0

]
= ρx0|0

The variance of the prior estimate then is

E
(
x1|0 − x1

)2
= ρ2p0 + σ2

u

I ρ2p0 is the uncertainty from period 0 carried over to period 1

I σ2
u is the uncertainty in period 0 about the period 1

innovation to xt

Denote prior variance as

p1|0 = ρ2p0 + σ2
u



The scalar filter cont’d.

The information in the signal z1 can be combined with the
information in the prior in exactly the same way as we combined
the two signals in the previous section.

The optimal weight k1 in

x1|1 = (1− k1)x1|0 + k1z1

is thus given by

k1 =
p1|0

p1|0 + σ2
v

and the period 1 posterior error covariance p1|1 then is

p1|1 =

(
1

p1|0
+

1

σ2
v

)−1

or equivalently

p1|1 = p1|0 − p2
1|0(p1|0 + σ2

v )−1



The Scalar Filter Cont’d.

We can again propagate the posterior error variance p1|1 one step
forward to get the next period prior variance p2|1

p2|1 = ρ2p1|1 + σ2
u

or
p2|1 = ρ2

(
p1|0 − p2

1|0(p1|0 + σ2
v )−1

)
+ σ2

u

By an induction type argument, we can find a general difference
equation for the evolution of prior error variances

pt|t−1 = ρ2
(
pt−1|t−2 − p2

t−1|t−2(pt−1|t−2 + σ2
v )−1

)
+ σ2

u

The associated period t Kalman gain is then given by

kt = pt|t−1(pt|t−1 + σ2
v )−1

which allows us to compute

xt|t = (1− kt)xt|t−1 + ktzt



The scalar filter

xt = ρxt−1 + ut : ut ∼ N(0, σ2
u) (state equation)

zt = xt + vt : vt ∼ N(0, σ2
v ) (measurement equation)

gives the Kalman update equations

xt|t = ρxt−1|t−1 + kt
(
z1 − ρxt−1|t−1

)
kt = pt|t−1(pt|t−1 + σ2

v )−1

pt|t−1 = ρ2
(
pt−1|t−2 − p2

t−1|t−2(pt−1|t−2 + σ2
v )−1

)
︸ ︷︷ ︸

pt−1|t−1

+ σ2
u



Propagation of the filter
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Properties

There are two things worth noting about the difference equation
for the prior error variances:

1. The prior error variance is bounded both from above and
below so that

σ2
u ≤ pt|t−1 ≤

1

(1− ρ2
)σ2

u

2. For 0 ≤ |ρ| < 1 the iteration is a contraction

The upper bound in (a) is given by the optimality of the filter: we
cannot do worse than making the unconditional mean our estimate
of xt for all t.

The lower bound is given by that the future is inherently uncertain
as long as there are innovations in the xt process, so even with a
perfect estimate of xt−1, xt will still not be known with certainty.



The scalar filter

xt = ρxt−1 + ut : ut ∼ N(0, σ2
u) (state equation)

zt = xt + vt : vt ∼ N(0, σ2
v ) (measurement equation)

gives the Kalman update equations

xt|t = ρxt−1|t−1 + kt
(
z1 − ρxt−1|t−1

)
kt = pt|t−1(pt|t−1 + σ2

v )−1

pt|t−1 = ρ2
(
pt−1|t−2 − p2

t−1|t−2(pt−1|t−2 + σ2
v )−1

)
︸ ︷︷ ︸

pt−1|t−1

+ σ2
u



What determines the Kalman gain kt?

Kalman filter optimally combine information in prior ρxt−1|t−1 and
signal zt to form posterior estimate xt|t with covariance pt|t

xt|t = (1− kt)ρxt−1|t−1 + ktz1

I More weight on signal (large kalman gain kt) if prior variance
is large or if signal is very precise

I Prior variance can be large either because previous state
estimate was imprecise (i.e. pt−1|t−1 is large) or because
variance of state innovations is large (i.e. σ2

u is large)



Example 1

Set

I ρ = 0.9

I σ2
u = 1

I σ2
v = 5



Example 1
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Example 2

Set

I ρ = 0.9

I σ2
u = 1

I σ2
v = 1



Example 2: Smaller measurement error variance
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Convergence to time invariant filter

If ρ < 1 and if ρ, σ2
u and σ2 are constant, the prior variance of the

state estimate

pt|t−1 = ρ2
(
pt−1|t−2 − p2

t−1|t−2(pt−1|t−2 + σ2
v )−1

)
+ σ2

u

will converge to

p = ρ2
(
p − p2(p + σ2

v )−1
)

+ σ2
u

The Kalman gain will then also converge:

k = p(p + σ2
v )−1

We can illustrate this by starting from the boundaries of possible
values for p1|0



Convergence to time invariant filter
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Convergence to time invariant filter
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The Multivariate Filter



The Kalman Filter

For state space systems of the form

Xt = AtXt−1 + Ctut

Zt = DtXt + vt

the Kalman filter recursively computes estimates of Xt conditional
on the history of observations Zt ,Zt−1, ...Z0 and an initial
estimate (or prior) X0|0 with variance P0|0.
The form of the filter is

Xt|t = AtXt−1|t−1 + Kt

(
Zt − DtXt|t−1

)
and the task is thus to find the Kalman gain Kt so that the
estimates Xt|t are in some sense “optimal”.

We further assume that X0|0 − X0 is uncorrelated with the shock
processes {ut} and {vt}.



A Brute Force Linear Minimum Variance Estimator

The general period t problem:

min
α

E

Xt −
t∑

j=0

αjZt−j

Xt −
t∑

j=0

αjZt−j

′

We want to find the linear projection of Xt on the history of
observables Zt ,Zt−1, ...Z1. From the projection theorem, the linear

combination
∑t

j=1 αjZt−j+1 should imply errors that are
orthogonal to Zt ,Zt−1, ...Z1 so thatXt −

t∑
j=0

αjZt−j

 ⊥ {Zj}tj=1

holds.



A Brute Force Linear Minimum Variance Estimator

We could compute the αs directly as

P (Xt | Zt ,Zt−1, ...Z1) = E
(
Xt

[
Z ′t Z

′
t−1Z

′
1

]′)×(
E
[
Z ′t Z

′
t−1...Z

′
1

] [
Z ′t Z

′
t−1...Z

′
1

]′)−1
×
[
Z ′t Z

′
t−1...Z

′
1

]′
but that is not particularly convenient as t →∞.



2 tricks to find recursive formulation

1. Gram-Schmidt Orthogonalization

2. Exploit a convenient property of projections onto mutually
orthogonal variables



Gram-Schmidt Orthogonalization in Rm

Let the matrix Y (m × n) have columns y1, y2, ....yn.

Y =
[

y1 y2 · · · yn
]

I The first column can be chosen arbitrarily so we might as well
keep the first column of Y as it is.

I The second column should be orthogonal to the first.
Subtract the projection of y2 on y1 from y2 and define a new
column vector ỹ2

ỹ2 = y2−y1

(
y′1y1

)−1
y′1y2

or
ỹ2 = (I − Py1) y2

and then subtract the projection of y3 on [y1 y2] from y3 to
construct ỹ3 and so on.



Projections onto uncorrelated variables

Let Z and Y be two uncorrelated mean zero variables so that

E
[
ZY ′

]
= 0

then
E [X | Z ,Y ] = E [X | Z ] + E [X | Y ]

To see why, just write out the projection formula. If the variables
that we project on are orthogonal, the inverse will be taken of a
diagonal matrix.



Finding the Kalman gain Kt

Xt|t = AtXt−1|t−1 + Kt

(
Zt − DtXt|t−1

)



Finding the Kalman gain K1

Start from the first period problem of how to optimally combine
the information in the prior X0|0 and the signal Z1 : Use that

Z1 = D1A0X0 + D1Cu1 + v1

and that we know that ut and vt are orthogonal to X0|0 to first
find the optimal projection of Z1 on X0|0

Z1|0 = D1A0X0|0

We can then define the period 1 innovation Z̃1 in Z1 as

Z̃1 = Z1 − Z1|0

We know that

E
(
X1 | Z̃1,X0|0

)
= E

(
X1 | Z̃1

)
+ E

(
X1 | X0|0

)
since Z̃1⊥X0|0 and E

(
Z1 | X0|0

)
= D1A0X0|0.



Finding K1

From the projection theorem, we know that we should look for a K1

such that the inner product of the projection error and Z̃1 are zero〈
X1 − K1Z̃1, Z̃1

〉
= 0

Defining the inner product 〈X ,Y 〉 as E (XY ′) we get

E
[(

X1 − K1Z̃1

)
Z̃ ′1

]
= 0

E
[
X1Z̃

′
1

]
− K1E

[
Z̃1Z̃

′
1

]
= 0

K1 = E
[
X1Z̃

′
1

] (
E
[
Z̃1Z̃

′
1

])−1

We thus need to evaluate the two expectational expressions above.



Finding E
[
X1Z̃

′
1

]
Before doing so it helps to define the state innovation

X̃1 = X1 − X1|0

that is, X̃1 is the one period error. The first expectation factor of
K1 in (41) can now be manipulated in the following way

E
[
X1Z̃

′
1

]
= E

(
X̃1 + X1|0

)
Z̃ ′1

= EX̃1Z̃
′
1

= EX̃1

(
X̃ ′1D

′ + v′1

)
= P1|0D

′



Evaluating E
[
Z̃1Z̃

′
1

]

Evaluating the second expectation factor

E
[
Z̃1Z̃

′
1

]
= E

[(
D1X̃1 + vt

)(
D1X̃1 + vt

)′]
= D1P1|0D

′
1 + Σvv

gives us the last component needed for the formula for K1

K1 = P1|0D
′
1

(
D1P1|0D

′
1 + Σvv

)−1

where we know that P1|0 = A0P0|0A
′
0 + C0C

′
0 .



The period 1 estimate of X

We can add the projections of X1 on Z̃1 and X0|0 to get our linear
minimum variance estimate X1|1

X1|1 = E
(
X1 | X0|0

)
+ E

(
X1 | Z̃1

)
= A0X0|0 + K1Z̃1



Finding the covariance Pt|t−1

We also need to find an expression for Pt|t .

We can rewrite
Xt|t = Kt Z̃t + Xt|t−1

as
Xt − Xt|t + Kt Z̃t = Xt − Xt|t−1

by adding Xt to both sides and rearranging. Since the period t
error Xt − Xt|t is orthogonal to Z̃t the variance of the right hand
side must be equal to the sum of the variances of the terms on the
left hand side. We thus have

Pt|t + Kt

(
DPt|t−1D

′ + Σvv

)
K ′t = Pt|t−1



Finding the covariance Pt|t−1 cont’d.

We thus have

Pt|t + Kt

(
DPt|t−1D

′ + Σvv

)
K ′t = Pt|t−1

or by rearranging

Pt|t = Pt|t−1 − Kt

(
DPt|t−1D

′ + Σvv

)
K ′t

= Pt|t−1 − Pt|t−1D
′
t

(
DtPt|t−1D

′
t + Σvv

)−1
DtPt|t−1

It is then straightforward to show that

Pt+1|t = AtPt|tA
′
t + CC ′

= A′t

(
Pt|t−1 − Pt|t−1D

′
t

(
DtPt|t−1D

′
t + Σvv

)−1
DtPt|t−1

)
A′t

+CC ′



Summing up the Kalman Filter

For the state space system

Xt = AtXt−1 + Ctut

Zt = DtXt + vt[
ut

vt

]
∼ N

(
0,

[
In 0n×l

0l×n Σvv

])
we get the state estimate update equation

Xt|t = AtXt−1|t−1 + Kt

(
Zt − DtXt|t−1

)
Kt = Pt|t−1D

′
t

(
DtPt|t−1D

′
t + Σvv

)−1

Pt+1|t = At

(
Pt|t−1 − Pt|t−1D

′
t1

(
DtPt|t−1D

′
t + Σvv

)−1
DtPt|t−1

)
A′t

+Ct+1C
′
t+1

The innovation sequence can be computed recursively from the
innovation representation

Z̃t = Zt − DtXt|t−1, Xt+1|t = At−1Xt|t−1 + At−1Kt Z̃t



Estimating the parameters in a State Space System



Estimating the parameters in a State Space System

For a given state space system

Xt = AXt−1 + Cut : ut ∼ N(0, I )

Zt = DXt + vt : vt ∼ N(0,Σvv )

How can we find the A,C ,D and Σv that best fits the data?



The Likelihood Function of a State Space model

We can use that the innovations Z̃t are conditionally independent
Gaussian random vectors to write down the log likelihood function
as

L(Z | θ) = (−T/2) log(2π)− T

2
log |Ωt | −

1

2

T∑
t=1

Z̃ ′tΩ
−1
t Z̃t

where

Z̃t = Zt − DAXt−1|t−1

Xt|t = AXt−1|t−1 + Kt

(
Zt − DAXt−1|t−1

)
Ωt = DPt|t−1D

′ + Σvv

We can start the Kalman filter recursions from the unconditional
mean and variance.

But how do we find the MLE?



The basic idea

How can we estimate parameters when we cannot maximize
likelihood analytically?

We need to

I Be be able to evaluate the likelihood function for a given set
of parameters

I Find a way to evaluate a sequence of likelihoods conditional
on different parameter vectors so that we can feel confident
that we have found the parameter vector that maximizes the
likelihood



Maximum Likelihood and Unobserved Components
Models

Unobserved Component model of inflation

πt = τt + ηt

τt = τt−1 + εt

Decomposes inflation into permanent (τ) and transitory (η)
component

I Fits the data well

I But we may be concerned about having an actual unit root
root in inflation on theoretical grounds

I Based on simplified (constant parameters) version of Stock
and Watson (JMCB 2007)



The basic formulas

We want to:

1. Estimate the parameters of the system, i.e. estimate σ2
η and

σ2
ε

1.1 Parameter vector is given by Θ =
{
σ2
η, σ

2
ε

}
1.2 Θ̂ = arg maxθ∈Θ L(πt | Θ)

2. Find an estimate of the permanent component τt at different
points in time



The Likelihood function

We have the state space system

πt = τt + ηt (measurement equation)

τt = τt−1 + εt (state equation)

implying that A = 1,D = 1,C =
√
σ2
ε ,Σv = σ2

η. The likelihood
function for a state space system is (as always) given by

L(Z | Θ) = −nT

2
log(2π)− T

2
log |Ωt | −

1

2

T∑
t=1

Z̃ ′tΩ
−1
t Z̃t

where

Z̃t = Zt − DAXt−1|t−1

Ωt = DPt|t−1D
′ + Σvv

and n is the number of observable variables, i.e. the dimension of
Zt .



Starting the Kalman recursions

How can we choose initial values for the Kalman recursions?

I Unconditional variance is infinite because of unit root in
permanent component

I A good choice is to choose “neutral” values, i.e. something
akin to uninformative priors

I One such choice is X0|0 = π1 and P0|0 very large (but finite)
and constant

L(Z | Θ) = −nT

2
log(2π)− T

2
log |Ωt | −

1

2

T∑
t=1

Z̃ ′tΩ
−1
t Z̃t



Maximizing the Likelihood function

How can we find Θ̂ = arg maxθ∈Θ L(πt | Θ)?

I The dimension of the parameter vector is low so we can use
grid search

Define grid for variances σ2
ε and σ2

η

σ2
ε = {0, 0.001, 0.002, ..., σ2

ε,max}
σ2
η = {0, 0.001, 0.002, ..., σ2

η,max}

and evaluate likelihood function for all combinations.
How do we choose boundaries of grid?

I Variances are non-negative

I Both σ̂2
ε and σ̂2

η should be smaller than or equal to the sample

variance of inflation so we can set σ2
ε,max = σ2

η,max = 1
T

∑
π2
t



Grid Search: Fill out the x’s

σ2
ε \σ2

η 0 0.5 1 1.5 2 2.5
-1 x x x x x x

-0.5 x x x x x x
0 x x x x x x

0.5 x x x x x x
1 x x x x x x



Maximizing the Likelihood function



Grid search

Pros:

I With a fine enough grid, grid search always finds the global
maximum (if parameter space is bounded)

Cons:

I Computationally infeasible for models with large number of
parameters



Maximizing the Likelihood function

Estimated parameter values:

I σ̂2
ε = 0.0028

I σ̂2
η = 0.0051

We can also estimate the permanent component



Actual Inflation and filtered permanent component
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Summing up

The Kalman filter can be used to

I Estimate latent variables in state space system

I Evaluate the likelihood function for given parameterized state
space system


