TOOLS FOR APPLIED MACRO 2017

PROBLEM SET 1

INSTRUCTIONS

Write up your answers carefully. Hand in during class on Wednesday February 15.

QUESTIONS

(1) Find the autocovariance function

$$\gamma_j \equiv E\left(x_t x_{t-j}\right)$$

for the MA(2) process

$$x_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} : \varepsilon_t \sim N(0, 1)$$

and j = 0, 1, 2, 3.

(2) Find the $MA(\infty)$ representation of the AR(1) process

$$y_t = \rho y_{t-1} + \varepsilon_t : \varepsilon_t \sim N(0, 1)$$

(3) Consider the (Hilbert) space of square summable sequences l^2 defined as the space of all sequences $\{a_0, a_1, a_2, ...\}$ such that

$$\sum_{j=0}^\infty a_j^2 < \infty$$

Show that

$$\langle a,b
angle\equiv\sum_{j=0}^{\infty}a_{j}b_{j}$$

is a valid inner product and that

$$\|a\| \equiv \sqrt{\sum_{j=0}^{\infty} a_j^2}$$

is a valid norm.

- (4) Use that the sequence of coefficients in an $MA(\infty)$ process with finite variance can be considered an element of l^2 . What is then the inner product $\langle x_t, x_{t-2} \rangle$ if x_t is defined as in Q1?
- (5) Find the distance (or metric) $||x_t y_t||$ where x_t and y_t are defined as in Q1 and Q2. What object does the distance $||x_t - y_t||$ correspond to?

Date: February 8, 2017.

TOOLS FOR APPLIED MACRO

- (6) For l^2 , the projection theorem states that \hat{y}_t is the minimum variance estimate of y_t conditional on y_{t-1} iff $\langle y_t \hat{y}_t, y_{t-1} \rangle = 0$. Find the scalar g such that $\hat{y}_t = gy_{t-1}$ and $\langle y_t \hat{y}_t, y_{t-1} \rangle = 0$ by explicitly computing the inner products. Compare to the expression for y_t above.
- (7) Assume that the ε_t s in Q1 and Q2 are the same. Find the scalar k as a function of the θ s and ρ such that $\hat{x}_t \equiv ky_t$ is the minimum variance estimate of x_t conditional on y_t .