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Recap from last time:

Unobserved Component model of Inflation

πt = τt + ηt

τt = τt−1 + εt

Decomposes inflation into permanent (τ) and transitory (η)
component

1. Estimated the parameters of the system, i.e. σ2
η and σ2

ε using
grid search

I σ̂2
ε = 0.0028

I σ̂2
η = 0.0051

2. Computed both real time and smoothed estimates of the
permanent component τt at different points in time



Actual inflation and filtered permanent component
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Maximizing the likelihood for larger models

How can we estimate parameters when we cannot maximize
likelihood analytically and when grid search is not feasible?

We need to

I Be be able to evaluate the likelihood function for a given set
of parameters

I Find a way to evaluate a sequence of likelihoods conditional
on different parameter vectors so that we can feel confident
that we have found the parameter vector that maximizes the
likelihood



Numerical maximization of likelihood functions

Estimating richer state space models

I Likelihood surface may not be well behaved

We will need more sophisticated maximization routines



Numerical maximization of likelihood functions

Today:
Numerical maximization

I (Very brief) review of grid search, steepest ascent and
Newton-Raphson algorithms

I Simulated annealing

Based on selected parts of Ch 5 of Hamilton and articles by Goffe,
Ferrier and Rogers (1994).

Work through an example:

I Simple DSGE model



Grid search

Divide range of parameters into grid and evaluate all possible
combinations

Pros:

I With a fine enough grid, grid search always finds the global
maximum (if parameter space is bounded)

Cons:

I Computationally infeasible for models with large number of
parameters



Steepest Ascent method

A blind man climbing a mountain.
Pros:

I Feasible for models with a large number of parameters

Cons:

I Can be hard to calibrate even for simple models to achieve the
right rate of convergence

I Too small steps and “convergence” is achieved to soon
I Too large step and parameters may be sent off into orbit.

I Can converge on local maximum. (How could a blind man on
K2 find his way to Mt Everest?)



Newton-Raphson

Newton-Raphson is similar to steepest ascent, but also computes
the step size

I Step size depends on second derivative

I May converge faster than steepest ascent

I Requires concavity, so is less robust when shape of likelihood
function is unknown



Simulated Annealing Goffe et al (1994)

I Language is from thermodynamics

I Combines elements of grid search with (strategically chosen)
random movements in the parameter space

I Has a good record in practice, but cannot be proven to reach
global max quicker than grid search.



Simulated Annealing: The Algorithm

Main inputs: Θ(0), temperature T , boundaries of Θ, temperature
reduction parameter rT (and the function to be max/minimized
f (Θ)).

1. θ′j = θ
(0)
j + r · vj where r ∼ U[−1, 1] and vi is an element of

the step size vector V.

2. Evaluate f (Θ′) and compare with f (Θ(0)). If f (Θ′) > f (Θ(0))
set Θ(1) = Θ′. If f (Θ′) < f (Θ(0)) set Θ(1) = Θ′ with

probability e(f (Θ′)−f (Θ(0))/T and Θ(1) = Θ(0) with probability
1− e(f (Θ′)−f (Θ(0))/T .

3. After Ns loops through 1 and 2 step length vector V is
adjusted in direction so that approx 50% of all moves are
accepted.

4. After NT loops through 1 and 3 temperature is reduced so
that T ′ = rT · T so that fewer downhill steps are accepted.



A minimalistic DSGE model



The linearized structural system

After linearizing, the main model equations are given by

πt = βEtπt+1 + κ(yt − y t)

yt = Etyt+1 − σ (it − Etπt+1)

it = φπt

xt = ρxt−1 + uxt : uxt ∼ N(0, σ2
u)

where πt , yt , yt , it are inflation, output, potential output and
nominal interest rate respectively.



Solving the model



3 ways to solve a linear model

Solving a model using full information rational expectations as the
equilibrium concept involves integrating out expectations terms
from the structural equations of the model by replacing agents’
expectations with the mathematical expectation, conditional on
the state of the model.

Three different ways of doing this.

1. Method of undetermined coefficients, can be very quick when
feasible and illustrates the fixed point nature of the rational
expectations solution.

2. Replacing expectations with linear projections onto observable
variables

3. Decouple the stable and unstable dynamics of the model and
set the unstable part to zero.



The 3 equation NK model

As a vehicle to demonstrate the different solution methods, we will
use a simple New-Keynesian model

πt = βEtπt+1 + κ(yt − y t)

yt = Etyt+1 − σ (it − Etπt+1)

it = φπt

xt = ρxt−1 + ut : ut ∼ N(0, σ2
u)

where πt , yt , yt , it are inflation, output, potential output and
nominal interest rate respectively.

I Single variable, potential output xt , as the state.



Method I:
Method of undetermined coefficients

Pros

I Method is quick when feasible

I Illustrates well the fixed point nature of rational expectations
equilibria.

Cons

I Difficult to implement in larger models



Method of undetermined coefficients

πt = βEtπt+1 + κ(yt − xt)

yt = Etyt+1 − σ (it − Etπt+1)

it = φπt

xt = ρxt−1 + ut : ut ∼ N(0, σ2
u)

Start by substituting in the interest rate in the Euler equation

xt = ρxt−1 + uxt

yt = Et(yt+1)− 1

γ
[φππt − Et (πt+1)]

πt = Et (πt+1) + κ [yt − xt ]



Solving model using method of undetermined
coefficients

Conjecture that model can be put in the form

xt = ρxt−1 + uxt

yt = axt

πt = bxt

Why is this a good guess?



Solving model using method of undetermined
coefficients

Substitute in conjectured form of solution into structural equation

axt = aρxt −
1

γ
[φπbxt − bρxt ]

bxt = bρxt + κ [axt − xt ]

where we used that xt = ρxt−1 + uxt implies that E[xt+1 | xt ] = ρxt



Solving model using method of undetermined
coefficients

Equate coefficients on right and left hand side

a = aρ− 1

γ
φπb +

1

γ
bρ

b = bρ+ κ [a− 1]

or [
(1− ρ) 1

γ (φπ − ρ)

−κ (1− ρ)

] [
a
b

]
=

[
0
−κ

]



Solving model using method of undetermined
coefficients

Solve for a and b[
a
b

]
=

[
(1− ρ) 1

γ (φπ − ρ)

−κ (1− ρ)

]−1 [
0
−κ

]
or [

a
b

]
=

[
−κφ−ρ−c
κγ 1−ρ
−c

]
where c = γ − κρ− 2γρ+ κφ+ γρ2 < 0



The solved model

The solved model is of the form

xt = ρxt−1 + uxt

yt = −κρ− φπ
c

xt

πt = κγ
ρ− 1

c
xt

where c = γ − κρ− 2γρ+ κφ+ γρ2 < 0



Method II: Replacing expectations with linear
projections

The second method uses that projections of the future values of
variables on observables gives optimal expectations (in the sense of
minimum error variance) if the observables span the space of the
state.

How does it work?

I Replace Etπt+1 and Etyt+1 with linear projections of these
variables on current inflation.

I There is nothing special about inflation. Projecting onto
current output would also work.



Least squares estimation via the projection theorem

To find the estimate x̂ as a linear function of y simply use that

〈x − βy , y〉 = E
[
(x − βy) y ′

]
= 0

and solve for β
β = E

(
xy ′
) [

E
(
yy ′
)]−1

The advantage of this approach is that once you have made sure
that the variables y and x are in a well defined inner product space,
there is no need to minimize the variance directly. The projection
theorem ensures that an estimate with orthogonal errors is the
(linear) minimum variance estimate.



Two useful properties of linear projections

1. If two random variables X and Y are Gaussian, then the
projection of Y onto X coincides withe the conditional
expectation E (Y | X ).

2. If X and Y are not Gaussian, the linear projection of Y onto
X is the minimum variance linear prediction of Y given X .



Replacing expectations with linear projections

We will use that in equilibrium

E (πt+1 | πt) =
cov(πt , πt+1)

var (πt)
πt

E (yt+1 | πt) =
cov(πt , yt+1)

var (πt)
πt

if the innovations ut to xt are Gaussian.



Replacing expectations with linear projections

Let

c0πt = E ∗ (πt+1 | πt)
d0πt = E ∗ (yt+1 | πt)

denote initial candidate projections of expected inflation and
output on current inflation. We can then write the structural
equations as

πt = βc0πt + κ(yt − xt)

yt = d0πt − σ (φπt − c0πt)



Replacing expectations with linear projections

Put the whole system in matrix form xt
πt
yt

 =

 1 0 0
κ 1− βc0 −κ
0 −d0 + σφ− σc0 1

−1  ρ 0 0
0 0 0
0 0 0

 xt−1

πt−1

yt−1


+

 1 0 0
κ 1− βco −κ
0 −d0 + σφ− σc0 1

−1  1
0
0

 ut

or
Xt = AXt−1 + Cut



Solution algorithm

1. Make an initial guess of c0 and d0 in (1)
2. Compute the implied covariances of current inflation and future

inflation and output using

E [XtX
′
t ] = ΣXX

ΣXX = AΣXXA
′ + CC ′

and
E [Xt+1X

′
t ] = AΣXX

3. Replace the cs and ds with the cs+1 and ds+1 in ((1))

cs+1 =
cov(πt , πt+1)

var (πt)

ds+1 =
cov(πt , yt+1)

var (πt)

using the covariances from Step 2.

4. Repeat Step 2-3 until cs and ds converges.



Method III: Stable/unstable decoupling

Originally due to Blanchard and Kahn (1980)

I Computational aspects of the method has been further
developed by others, for instance Klein (2000).

I The most accessible reference is probably Soderlind (1999),
who also has code posted on his web site.

The method has several advantages:

I Fast

I Provides conditions for when a solution exists

I Provides conditions for when the solution is unique.



Method III: Stable/unstable decoupling

Start by putting the model into matrix form

 1 0 0
0 β 0
0 σ 1

 xt+1

Etπt+1

Etyt+1


=

 ρ 0 0
κ 1 −κ
0 σφ 1

 xt−1

πt
yt

+

 1
0
0

 ut+1

or

A0

[
x1
t+1

Etx
2
t+1

]
= A1

[
x1
t

x2
t

]
+ C1ut+1

I x1
t is vector containing the pre-determined and/or exogenous

variables (i.e. xt)
I x2

t a vector containing the forward looking (”jump”) variables
(i.e. Etyt+1 and Etπt+1).



Method III: Stable/unstable decoupling

Pre-multiply both sides of

A0

[
x1
t+1

Etx
2
t+1

]
= A1

[
x1
t

x2
t

]
+ C1ut+1

by A−1
0 to get [

x1
t+1

Etx
2
t+1

]
= A

[
x1
t

x2
t

]
+ Cut+1

where A = A−1
0 A1 and C = A−1

0 C1.

For the model to have unique stable solution the number of stable
eigenvalues of A must be equal to the number of
exogenous/pre-determined variables.



Method III: Stable/unstable decoupling

Use a Schur decomposition to get

A = ZTZH

where T is upper block triangular

T =

[
T11 T12

0 T22

]
and Z is a unitary matrix so that ZHZ = ZZH = I
( =⇒ ZH = Z−1).

I For any square matrix W , W−1AW is a so called similarity
transformation of A.

I Similarity transformations do not change the eigenvalues of a
matrix

I We can always choose Z and T so that the unstable
eigenvalues of A are shared with T22



Method III: Stable/unstable decoupling

Define the auxiliary variables[
θt
δt

]
= ZH

[
x1
t

x2
t

]
We can then rewrite the system (33) as

ZH

[
x1
t+1

Etx
2
t+1

]
= ZHZTZH

[
x1
t

x2
t

]
or equivalently

E

[
θt+1

δt+1

]
=

[
T11 T12

0 T22

] [
θt
δt

]
since ZHZ = I .



Method III: Stable/unstable decoupling

For this system to be stable, the auxiliary variables associated with the

unstable roots in T22 must be zero for all t. (WHY?)

Imposing δt = 0∀t reduces the relevant state dynamics to

θt = T11θt−1

To get back the original variables we simply use that[
x1
t

x2
t

]
=

[
Z11

Z21

]
θt

or [
x1
t

x2
t

]
=

[
Z11

Z21

]
Z−1

11 x1
t

which is the solution to the model. It is in the form

x1
t = Mx1

t−1 + εt

x2
t = Gx1

t

where M = Z11T11Z
−1
11 (= ρ in our example) and G = Z21Z

−1
11 .



Estimating a DSGE model using Simulated
Annealing

Remember our benchmark NK model:

xt = ρxt−1 + uxt

yt = Et(yt+1)− 1

γ
[rt − Et (πt+1)] + uyt

πt = Et (πt+1) + κ [yt − xt ] + uπt

rt = φπt + urt

To estimate the model using three time series, we need to add
more shocks



Estimating a DSGE model using Simulated
Annealing

The solved model can be put in state space form

Xt = AXt−1 + Cut

Zt = DXt + vt

where

Xt = xt ,A = ρ,Cut = uxt

Zt =

 rt
πt
yt

 ,D =

 φκγ 1−ρ
−c

κγ 1−ρ
−c

−κφ−ρ−c

 , vt = R

 urt
uπt
uyt


where c = γ − κρ− 2γρ+ κφ+ γρ2 < 0

We want to estimate the parameters θ = {ρ, γ, κ, φ, σx , σy , σπ, σr}



The log likelihood function of a state space system

For a given state space system

Xt = AXt−1 + Cut

Zt
(p×1)

= DXt + vt

we can evaluate the log likelihood by computing

L(Z | Θ) = −.5
T∑
t=0

[
p ln(2π) + ln |Ωt |+ Z̃ ′tΩ

−1
t Z̃t

]
where Z̃t are the innovation from the Kalman filter
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21/05/13 21:07 C:\Documents and Settings\U54908\My Documents\MATLAB\Untitled 1 of 1

% Set up and estimate miniature DSGE model
clc
clear all
close all
global Z
load('Z');
 
r=0.95; %productivity persistence
g=5; %relative risk aversion
d=0.75; %Calvo parameter
b=0.99;   %discount factor
k=((1-d)*(1-d*b))/d; %slope of Phillips curve
f=1.5;% coefficient on inflation in Taylor rule
sigx=0.1;% s.d. prod shock
sigy=0.11;% s.d. demand shock
sigp=0.1;% s.d. cost push shock
sigr=0.1;% s.d. monetary policy shock
 
theta=[r,g,d,b,f,sigx,sigy,sigp,sigr]';%Starting value for paramter vector
LB=[0,1,0,0,1,zeros(1,4);]'; UB=[1,10,1,1,5,1*ones(1,4);]';
x=theta;
 
sa_t= 5; sa_rt=.3; sa_nt=5; sa_ns=5;
 
[xhat]=simannb( 'LLDSGE', x, LB, UB, sa_t, sa_rt, sa_nt, sa_ns, 1);
 



Code has three components

1. The main program that defines starting values for simulated
annealing algorithm etc

2. A function that translates Θ into a state space system

3. A function that evaluates L(Z | Θ)

Point 2 and 3 are both done by LLDSGE.m
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Smoothed Estimate of Productivity



Components for ML estimation of State Space
Models

1. A function that maps parameters Θ into a SSS

2. A function that evaluates the likelihood function L(Z | Θ)

3. A maximizer that takes 1 and 2 and starting values for Θ as
inputs

That’s all you need.



No-arbitrage term structure models



State Space models and Principal Components



State Space models and Principal Components

Previously, we used principal components to find the factors of a
system that was in state space form

I What is the relation ship between the state Xt and the factors
Ft

I Can we find one from the other?

I When is state space models and filtering preferable to
principal components?



Principal component as factors

Recall:

Ft
(r×1)

= ΦFt−1 + uFt

Yt
(N×1)

= W
(N×r)

Ft
(r×1)

+ vt

I W contains the eigenvectors of EYtY
′
t = WΛW ′ and

WW ′ = I so that Ft = W ′Yt

I Λ is a diagonal matrix containing the ordered eigenvalues

This looks like a special case of a state space system



Can we find a mapping from Xt to Ft?

Yes:

I When N is large or Σvv is small the following holds:

Ft = W ′Yt

= W ′DXt

If D is of rank n (where n = dimension of X ), then (W ′D)−1

exists so the mapping works in both directions.



How can we find W for a state space model?

EZtZ
′
t = DΣxxD

′ + Σvv

= WΛW ′

where Σxx solves
Σxx = AΣxxA

′ + CC ′

Doing the eigenvector/value decomposition of EZtZ
′
t thus gives us

W so that the factors can be computed as Ft = W ′DXt



How about the dynamics of the factors?

We have:

Ft = ΦFt−1 + uFt
Xt = AXt−1 + Cut

To find Φ, use that Ft = W ′DXt and Xt = (W ′D)−1 Ft

Ft = W ′DAXt−1 + W ′DCut

= W ′DA
(
W ′D

)−1
Ft−1 + W ′DCut

to get

Φ = W ′DA
(
W ′D

)−1
,EuFt u

′F
t = W ′DC

(
W ′DC

)′



Example

Simulate data using

A =

[
0.9 0
0.2 0.7

]
C = I ,D = I ,Σvv = 0.1× I

with T = 100.
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T=100 sample and theoretical Ψ

Using Φ = W ′DA (W ′D)−1

Φ =

[
0.69 0.008
−0.19 0.91

]
Φ̂ =

[
0.71 0.025
−0.19 0.93

]
Differences are due to small sample and non-zero measurement
errors



Take homes from PCs and State Space models

State space systems that have the same implications for
observables are not unique

I “Rotations” of state variables in Xt can give different
interpretations

I Different rotations span the same space, so no difference in
predictive content

Is this important?

I Depends on the question.

I In factor models of the term structure, PC imply that the
factors will have the level, slope and curvature interpretation.

I In macro models, usually too few degrees of freedom to do any
rotations since number of deep parameters is lower than free
parameters in the state space system.



What is better when?

State space model and Kalman filter is better...

I ...if number of different observable time series is small...

I ...and measurement errors are large.

Time dimension is important when law of large numbers do not
work in the cross-section

I If noise is small or number of time series very large, PC and
SSM give the same results

I Choose whatever is more convenient


