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Structural VARs

Today:

I Long-run restrictions

I Sign restrictions

I Two critiques of SVARs

Kilian Handbook Chapter, Blanchard and Quah (1989), Rudebusch
(1998), Gali (1999) and Chari, Kehoe McGrattan (2008).



Recap:

We know how to estimate VAR(p) model

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt : εt ∼ N(0,Ω)

But sometimes we are interested in the structural form of a VAR

A0yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + ut : ut ∼ N(0, I ) (1)



Recap:

Last time we discussed how to estimate A0 using the Choleski
decomposition

I This implied ordering the variables according to
contemporaneous causality

Whether this is a good idea or not cannot be judged by simply
looking at the data

I Identifying assumptions need to be motivated carefully and
appear sensible on an a priori basis



Recap:

To go from reduced form

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

= A−1
0 A1yt−1 + A−1

0 A2yt−2 + ...+ A−1
0 Apyt−p + A−1

0 ut

to the structural form we assumed that A0 is lower triangular

A0yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + ut

so that A−1
0 =chol(Ω).

I Important: There are (infinitely) many ways to orthogonalize
the reduced form errors εt that all fit the data equally well

I There exists an infinite number of orthogonal matrices T such
that TT ′ = I and hence A−1

0 TT ′
(
A−1

0

)′
= Ω



Long run restrictions

Another class of “weak” restriction that may hold across a large
range of models are so called long run restrictions

I First suggested by Blanchard and Quah (1989)

The idea: There may a be a subset of shocks that have
permanent effects on some variables but not on others, and shocks
that have no permanent effects on any variables

I This splits reduced form shocks into permanent shocks and
”everything else”



Blanchard and Quah’s model of unemployment and
GNP growth

A simplified version (e.g. VAR(1) and demeaned data) can be
written as

[
a0

11 a0
12

a0
21 a0

22

] [
Ut

∆yt

]
=

[
a1

11 a1
12

a1
21 a1

22

] [
Ut−1

∆yt−1

]
+

[
udt
ust

]
where Ut is unemployment and ∆yt is change in (log) GNP.

The identifying assumption is that udt do not have permanent
effects on the level of GNP



Computing long run effects

Compute long run (level) effects[
Ut

∆yt

]
= Φ1

[
Ut−1

∆yt−1

]
+ A−1

0 ut

by summing all future changes in GNP

E

[ ∞∑
s=0

[
Ut+s

∆yt+s

]
| ut

]
=

[
A−1

0 + Φ1A
−1
0 + Φ2

1A
−1
0 + ...Φ∞1 A−1

0

]
ut

= (I − Φ1)−1 A−1
0 ut



Linking the reduced form estimates to structural
coefficients

As before, data can give us reduced form estimates of Φ̂1 and Ω̂ :

Φ̂1 =
∑

YtY
′
t−1

[∑
Yt−1Y

′
t−1

]−1

Ω̂ =
1

T − p

∑(
Yt − Φ̂1Yt−1

)(
Yt − Φ̂1yt−1

)′
where Ω = E (εtε

′
t) = A−1

0

(
A−1

0

)′
and Yt ≡ [Ut ∆yt ]

′.

We now have everything we need to impose our identifying
assumption that (I − Φ1)−1 A−1

0 is upper triangular, i.e.

(I − Φ1)−1 A−1
0 =

[
x x
0 x

]



Imposing the identifying assumption in practice

We want to find a matrix A−1
0 such that

(I − Φ)−1 A−1
0 =

[
x x
0 x

]
A−1

0

(
A−1

0

)′
= Ω

The best way to find A0 is to again use the Choleski
decomposition, but now of the matrix Q defined as

Q ≡ (I − Φ)−1 A−1
0

(
A−1

0

)′ (
(I − Φ)−1

)′
= (I − Φ)−1 Ω

(
(I − Φ)−1

)′
so that

chol(Q) = (I − Φ)−1 A−1
0

or that
A−1

0 = (I − Φ) chol(Q)



A procedure for using long run restrictions

1. Look at the data (Always useful....)

2. Estimate reduced form

3. Determine VAR order of reduced form

4. Find long run response matrix

5. Impose identifying assumption to find A−1
0



Step 1: Look at the data
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Step 2 and 3

Estimate reduced form

I Standard OLS

Determine VAR order of reduced form

I Use LR test or FPE, AIC, HQ or Schwarz criterion

We know how to do all this, but let’s look at plots.



Determine VAR order: LR tests
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Determine VAR order
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Step 4: Compute long run response

Computing the long run response in companion form

ξt = F ξt−1 + Cut : ξt ≡
[
Y ′t Y ′t−1 · · · Y ′t−p+1

]′
and define companion matrix F as

F ≡


Φ1 Φ2 · · · Φp

I 0 · · · 0

0 I 0
...

0 0 I 0

 ,C =


A−1

0

0
0
0


Long run response now given by[

In 0
]

[I − F ]−1 C



Step 4: Compute long run response cont’d

Long run response now given by[
In 0

]
[I − F ]−1 C

Define

W ≡
[
W11 W12

W21 W22

]
= [I − F ]−1

then long run response of Yt = W11A
−1
0 so that

A−1
0 = W−1

11 chol(W11Ω̂W ′
11).



Impulse response functions

Put identified matrices in the appropriate places of the companion
form in order to find impulse responses

∂ξt+s

∂ut
= F sC

Since VAR order suggestions where somewhat ambiguous we
should check for several different p.

I But for simplicity we will use p = 1



IRFs with p=1
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A way to double check your IRFs:

What do we know about the impulse responses of first differences
of GNP with respect to demand shocks?

I IRFs in growth rates should accumulate to zero, that is, area
above and below zero line of impulse response of ∆yt with
respect to a demand shock should “cancel”.

This can be checked by calculating the cumulative sums of the
IRFs, i.e. for each s compute

S∑
s=0

F sC

then the second row, first column element should tend to zero as
S →∞.

I It is easier to see in a graph



Cumulative IRFs with p=1
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Variance decomposition

1. Start by computing the unconditional variance

Σyy = ΦΣyΦ′ + CC ′ =

[
σ2

∆y σ∆yu

σu∆y σ2
u

]
2. Compute variance of first variable using c1c

′
1 instead of CC ′ in

Σy1 = ΦΣy1Φ′ + c1c
′
1

=

[
σ2

∆y1 σ∆yu1

σu∆y1 σ2
u1

]
3. Divide the resulting diagonal elements with corresponding

diagonal element of unconditional covariance matrix, i.e.

compute the fractions
σ2

∆y1

σ2
∆y

and
σ2
u1
σ2
u

to get the fraction of the

unconditional variances explained by the first shock.

4. Repeat step 2-3 for each shock



Decomposing the variance in the Blanchard-Quah
example

ud
t us

t

Ut 0.99 0.01
∆yt 0.74 0.26

I Most of the variance of both variables are explained by
demand shocks

I For unemployment, demand shocks explain virtually all of the
variation

Check that decompositions sum to unity!



Historical Decompositions

What shocks at what time contributed to the business cycle during
each moment in the sample?

Yt = ΦYt−1 + Cut

= ΦtY0 + Φt−1Cu1 + ...+ Φt−sCus + ...+ Φt−t+1Cut−1 + Cut

Decompose into the effect of each shock in period t as

Yt = ΦtY0 + Φt−1c1u1,1 + ...+ Φt−t+1c1u1,t−1 + c1u1,t

+Φt−1c2u2,1 + ...+ Φt−t+1c2u2,t−1 + c2u2,t

We can compute this for each t if we have a time series for the ut

given by
ut = C−1 (Yt − ΦYt−1)

It is illustrative to plot all this in one graph, containing y1t , y11,t

and y12,t and initial conditions effects.



Historical decomposition
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Other examples of long run restrictions

Gali (1999) uses long run restrictions to analyze the implications of
permanent productivity shocks for employment and hours worked.

I Identifying assumption: Only productivity shocks can have
permanent effects on level of output

I Finds that identified productivity shocks do not cause an
increase in hours worked or employment, as suggested by RBC
models

I Gali argues that this is evidence in favor of New Keynesian
models with sticky prices.

I NK models predict that hours fall after productivity shock

More on this in a moment...



A warning:

The Matlab command R=chol(Q) gives you an upper triangular
matrix R such that R ′R = Q and not an R such that RR ′ = Q.

I I.e. R ′ is lower triangular.

I To get an upper triangular R ′ such that R ′R = Q use
R=chol(Q,’lower’)

I Make sure to verify that your identified matrix A−1
0

satisfies A−1
0

(
A−1

0

)′
= Ω!



Identification via Sign Restrictions

An alternative to exact short- or long-run restrictions is to impose
sign restrictions

Examples:

I Monetary policy shocks has a negative effect on inflation and
unemployment but a positive effect on the federal funds rate

I Productivity shocks has a positive effect on output and a
negative effect on inflation

Sign restrictions are flexible and can be imposed on any horizon

I Only on impact period

I On the first s periods after impact

I On the average response over s periods



Sign Restrictions Algorithm

Let P = chol(Ω) so that PP ′ = Ω. Then C = PD also satisfies
PP ′ = Ω for any orthogonal matrix D such that DD ′ = I .

The procedure consists of the following steps:

1. Draw an nn matrix L of NID(0, 1) random variables. Derive
the QR decomposition L = QR and QQ ′ = 1.

2. Let D = Q ′. Compute impulse responses using the
orthogonalization C = PD. If the implied impulse response
functions satisfy the identifying restrictions, keep D.
Otherwise discard.

3. Repeat the first two steps a large number of times, recording
each D that satisfies the restrictions (and the corresponding
impulse response functions).

The resulting set C in conjunction with the reduced-form estimates
characterizes the set of admissible structural VAR models.



Interpreting IRFs from Sign Restrictions

I IRFs are set identified

I Median has no probabilistic interpretation: Entire set is
equally likely

I Tighter sets suggest fewer rotations satisfy restrictions

I Shape of set may no correspond to shape of any individual IRF



Two critiques of SVARs

1. Rudebusch vs Sims

2. Minnesota vs Long Run restrictions



Rudebusch vs Sims

Rudebusch (1998) argues that SVAR measures of monetary policy
do not make sense

Sims argues that they do



Rudebusch vs Sims

What is the object we are discussing?

A0

 rt
∆yt
πt

 = A1

 rt−1

∆yt−1

πt−1

+ ...+ Ap

 rt−p
∆yt−p
πt−p

+ ut

or in reduced form rt
∆yt
πt

 = Φ1

 rt−1

∆yt−1

πt−1

+ ...+ Φp

 rt−p
∆yt−p
πt−p

+ εt

Sometimes there are many more than 3 variables included.



Rudebusch’s argument:

I The interest rate equation does not look like the reaction
function of a central bank

I In reality, reaction functions are not linear and stable over time
I There are too many lags for it to be a reasonable description

of central bank decision making
I Use of final (i.e. revised) data

I Monetary policy shocks look very different depending on
which variables that are included in the regression, so how can
we expect impulse responses to tell us anything about real
monetary policy?



 



Sims’ counter argument

I Linearity and time invariance are always approximations and
this is a problem common to all macroeconomic models.
Non-linearity and time varying rules add little explanatory
power, though.

I Long lags in ”reaction function” is just a statistical summary
that does not imply that the Fed responds to ”old
information”.

I Revised data: Can be handled by restricting the response of
interest rates to only variables that are observed at the time
of the decision.

I Sims has a subtle but important point about the how models
can disagree about the shocks but agree about the effects of
monetary policy.



Chari, Kehoe and McGrattan (JME2008)

Some background:

I SVARs using long run restrictions (e.g. Gali 1999) similar to
Blanchard and Quah’s (1989) find that hours worked decrease
in response to permanent productivity shocks

I This is bad news for RBC models since they imply that hours
should increase in response to productivity

I Conclusion: Only models fitting this pattern (i.e. sticky price
models) are worth pursuing.

Chari et al challenges this conclusion



Chari, Kehoe and McGrattan (JME2008)

Chari et al shows that when the SVAR methodology is applied to
data generated from a prototypical RBC model, hours appear to
respond negatively to a productivity shock, even though in the
model, they respond positively.

I This seems to suggest that the SVAR literature do not
identify the productivity shock correctly

Chari et al argues that there are two sources that bias the results
of the SVAR literature:

1. Small sample bias in VARs

2. Lag truncation bias



Chari, Kehoe and McGrattan (JME2008)

Lag truncation bias:
The structural model can be written as an MA(∞)

Yt = A0εt + A1εt−1 + ...+ Asεt−s : s →∞
≡ A(L)εt

An implicit assumption in the SVAR literature is that A(L)−1 exists
and is equal to I −

∑p
i=1 BiL

i so that there exists a finite order
VAR

[I −
p∑

i=1

BiL
i ]Yt = εt

where p is a low number (typically p = 4).







Suggested strategy to use SVARs to guide model
design

I It is risky to compare estimated IRFs to true model IRFs

I A better strategy is to compare estimated IRFs from actual
data with estimated IRFs from data generated by theoretical
model

The Minnesota slogan is Do to the model what you do to the data
That is reasonable advice

I Also applies to de-trending issues etc


