
INTRODUCTION TO INFORMATION THEORY

KRISTOFFER P. NIMARK

These notes introduce the machinery of information theory which is a field within applied

mathematics. The material can be found in most textbooks on information theory. Simple

introductions are Luenberger (2006) and Pierce (1980). More advanced material can be

found in Cover and Thomas (2006) and Kullback (1968).

1. Information and entropy

In the everyday meaning of the word, information means many things. To treat the topic

formally, we need to be more precise.

1.1. Defining and measuring information. Claude Shannon proposed to define the

amount of information I contained in a message with probability p as

I ≡ log (1/p) = − log p (1.1)

Does this definition make sense? Yes, being told that something unusual has occurred is in

some sense more informative than knowing that something that often happens have occurred

since it changes our beliefs about the state more. Example: The message ”It snowed in Ithaca

in July” contains more information than ”It snowed in Ithaca in January.”

While the logarithm in the definition can be taken with respect to any base in (1.1), it

is common in information theory to use base 2 logarithms. The amount of information is

then measured in bits. Because of this convention, whenever the base of the logarithm is left

unspecified, it is taken to be 2.
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1.2. Additivity of information. Information about independent events is additive: A

message about two independent events, A and B, contains

IAB = − log pApB = − log pA − log pB = IA + IB (1.2)

1.3. Entropy. Entropy is a measure of the expected amount of information. For two events

with probability p and 1− p, entropy is given by

H(p) = −p log p− (1− p) log(1− p) (1.3)

1.3.1. Example: The weather in California. The weather in California is sunny with prob-

ability 7/8 and cloudy with probability 1/8. The average information on sunny and cloudy

days is then given by

H = − (7/8) log (7/8)− (1/8) log (1/8)

=
1

8
[7 log 7− 7 log 8− log 8]

=
1

8
[7× 2.81 + 7× 3− 3]

= .54 bits.

Consider the general expression for a two event source

H(p) = −p log p− (1− p) log(1− p) (1.4)

If p equals either 0 or 1, the event is completely determined and entropy is then 0. Entropy

is maximized for p = 1/2 and H = 1.

1.3.2. Example. The game 20 questions: What questions do you start with? Which questions

do you expect to allow you to reject the largest number of candidates?

1.4. Information Sources. An information source is defined to consist of the possible

mutually exclusive outcomes (events) and their associated probabilities. The entropy of an
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n-event source is

H(p1, p2, ..., pn) = −p1 log p1 − p2 log p2 − ...−−pn log pn

1.4.1. Example. A three event source with probabilities 1/2, 1/4,1/4 have entropy

H (1/2, 1/4, 1/4) =

(
1

2
log 2 +

1

4
log 4 +

1

4
log 4

)
=

3

2

1.5. Two properties of entropy.

(1) Non-negativity:H ≥ 0

(2) H(p1, p2, ..., pn) ≤ log n and with equality if pi = pj∀i, j

1.6. Additivity. Entropy is additive in the same way information is. If two events, S and

T are independent, then the probability of the event (T, S) is pTpS and we then have that

H(S, T ) = H(S) +H(T )

We call the (S, T ) the product of two sources. If the two sources are independent, the entropy

of the product is given by

H (S, T ) = −
∑

s∈S,t∈T

pspt log pspt

= −
∑

s∈S,t∈T

pspt [log ps + log pt]

= −
∑
t∈T

pt

[∑
s∈S

ps log ps

]
−
∑
s∈S

ps

[∑
t∈T

pt log pt

]
= H(S) +H(T )

since ∑
t∈T

pt = 1,
∑
s∈S

ps = 1.
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1.7. Mixture of sources. Example: A source can by probability p be generated by a

die and with probability 1 − p be generated by a flip of a coin. The event space is then

1,2,3,4,5,6,heads, tails. The entropy of the source is

H = pH(die) + (1− p)H(coin) +H(p)

1.8. Bits as measure. Bits measure length of binary strings. Entropy of a string of binary

numbers only coincides with the number of bits if all events are equally likely. Otherwise,

the entropy is lower than the number of bits.

2. Differential entropy

Entropy is only defined for discrete random variables. The corresponding concept for

continuously distributed random variables is called differential entropy. Not much changes

in terms of results and interpretations, apart from that integrals replace summations.

Definition 1. The differential entropy of X when X is a continuous random variable is

defined as

h(X) = −
∫
S

f(x) log f(x)dx

where S is the support of f

Example 1. Uniform distribution X ∼ (0, a) so that f(x) = 1
a

h(X) = −
∫ a

0

1

a
log

1

a
dx

= log a

Entropy is thus increasing in length of interval, which is intuitive.
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Example 2. Normal distribution X ∼ (0, σ2) so that f(x) = 1√
2πσ

e−x
2/(2σ2)

h(X) = −
∫
f(x) log

[
1√
2πσ

e−x
2/(2σ2)

]
dx

=
1

2
log 2πeσ2

The entropy of a normally distributed variable is thus increasing in its variance, which is

also intuitive since entropy is also a natural measure of uncertainty.

3. Channels

An information channel transmits information about the random variable X (input) to

the random variable Y (output). A discrete channel is defined by transition probabilities

between states of the input X and the output Y, or equivalently, the conditional distribution

of outputs (signals), given the inputs (states).

Example 3. Binary symmetric channel X, Y ∈ {0, 1}

p(Y = X) = p

p(Y 6= X) = 1− p

Example 4. Binary asymmetric channel X, Y ∈ {0, 1}

p(Y = 1 | X = 1) = p

p(Y = 0 | X = 0) = q

and p 6= q.



6 KRISTOFFER P. NIMARK

3.1. Conditional and joint entropies. Conditional entropy is denoted H(Y | X).It can

be derived by starting with the entropy of Y conditional on a particular realization of X

H (Y | xi) =
∑
yj

p (yj | xi) log
1

p (yj | xi)
.

Definition 2. Conditional entropy H(Y | X)

H(Y | X) =
∑
xi

H (Y | xi) p (xi) .

Example 5. The toss of a die. Let Y be outcome of a six sided die and let X be the events

High (5 or 6) and Not High (1,2,3, or 4). The conditional entropy is

H(Y | X) =
1

3
log 2 +

2

3
log 4

=
5

3

< 2.56

= H(Y )

This is a general result:

Lemma 1. Conditioning on a random variable cannot increase entropy

0 ≤ H(Y | X) ≤ H(Y )

However, it is not generally true that H(Y | xi) ≤ H(Y ).

Lemma 2. Joint entropy

H(X, Y ) = H(Y | X) +H(X)

= H(X | Y ) +H(Y )

3.2. Mutual Information.
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Definition 3. The mutual information of a random variable X given a random variable Y

is

I(X;Y ) = H(X)−H(X | Y )

Interpretations: Mutual information is the reduction in uncertainty about X that occurs

when Y is observed

Properties of mutual information

(1) I(X;Y ) = H(X, Y )−H(X | Y )−H(Y | X)

(2) I(X;Y ) = H(X)−H(Y | Y )

(3) I(X;Y ) = H(Y )−H(Y | X)

(4)

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)

(5) I(X;Y ) ≥ 0

(6) I(X;X) = H(X)
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