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The Plan

1. What is Bayesian statistics? How is it different from
frequentist methods?

2. 4 Bayesian Principles

3. Priors: From prior information to prior distributions
The material in today’s lecture can be found in any good text
book on Bayesian statistics. One good example is Christian P.

Robert's The Bayesian Choice: From decision theoretic foundations
to Computational Implementation



Probability and statistics; What's the difference?

Probability is a branch of mathematics

» There is little disagreement about whether the theorems
follow from the axioms

Statistics is an inversion problem: What is a good probabilistic
description of the world, given the observed outcomes?

> There is some disagreement about how we interpret
data/observations



Why probabilistic models?

Is the world characterized by randomness?

» |s the weather random?
» Is a coin flip random?
» ECB interest rates?



What is the meaning of probability, randomness and
uncertainty?

Two main schools of thought:

» The classical (or frequentist) view is that probability
corresponds to the frequency of occurrence in repeated
experiments

» The Bayesian view is that probabilities are statements about
our state of knowledge, i.e. a subjective view.

The difference has implications for how we interpret estimated
statistical models and there is no general agreement about which
approach is “better”.



Frequentist vs Bayesian statistics

Variance of estimator vs variance of parameter

» Bayesians think of parameters as having distributions while
frequentist conduct inference by thinking about the variance
of an estimator

Frequentist confidence intervals:

> If point estimates are the truth and with repeated draws from
the population of equal sample length, what is the interval
that @ lies in 95 per cent of the time?

Bayesian probability intervals:

» Conditional on the observed data, a prior distribution of 6 and
a functional form (i.e. model), what is the shortest interval
that with 95% contains 67

The main conceptual difference is that Bayesians condition on the
data while frequentist design procedures that work well ex ante.



Frequentist vs Bayesian statistics

Coin flip example:

After flipping a coin 10 times and counting the number of heads,
what is the probability that the next flip will come up heads?

» A Bayesian with a uniform prior would say that the probability
of the next flip coming up heads is x/10 and where x is the
number of times the flip came up heads in the observed
sample

» A frequentist cannot answer this question: A frequentist
confidence interval can only be used to compute the
probability of having observed the sample conditional on a
given null hypothesis about the probability of heads vs tails.



Bayesian statistics

“Bayesianism has obviously come a long way. It used to be that
could tell a Bayesian by his tendency to hold meetings in isolated
parts of Spain and his obsession with coherence, self-interrogations,
and other manifestations of paranoia. Things have changed...”

Peter Clifford, 1993

Quote arrived here via Jesus Fernandez-Villaverde (U Penn)



Bayesian statistics

Bayesians used to be fringe types, but are now more or less the
mainstream in macro,

» This is largely due to increased computing power

Bayesian methods have several advantages:

» Facilitates incorporating information from outside of sample

» Easy to compute confidence/probabilty intervals of functions
of parameters

» Good small sample properties



The subjective view of probability

What does subjective mean?
» Coin flip: What is prob(heads) after flip but before looking?

Important: Probabilities can be viewed as statements about our
knowledge of a parameter, even if the parameter is a constant

> E.g. treating risk aversion as a random variable does not
imply that we think of it as varying across time.



The subjective view of probability

Is a subjective view of probability useful?
> Yes, it allow people to incorporate information from outside
the sample

» Yes, because subjectivity is always there (it just more hidden
in frequentist methods)

> Yes, because one can use “objective”, or non-informative
priors

» And: Sensitivity to priors can be checked



4 Principle of Bayesian Statistics

1. The Likelihood Principle
2. The Sufficiency Principle
3. The Conditionality Principle
4. The Stopping Rule Principle

These are principles that appeal to “common sense”.



The Likelihood Principle

All the information about a parameter from an experiment is
contained in the likelihood function



The Likelihood Principle

The likelihood principle can be derived from two other principles:

» The

>

» The

Sufficiency Principle

If two samples imply the same sufficient statistic (given a
model that admits such a thing), then they should lead to the
same inference about 6

Example: Two samples from a normal distribution with the
same mean and variance should lead to the same inference
about the parameters 1 and o2

Conditionality Principle

If there are two possible experiments on the parameter 6 is
available, and one of the experiments is chosen with
probability p then the inference on 6 should only depend on
the chosen experiment



The Stopping Rule Principle

The Stopping Rule Principle is an implication of the Likelihood
Principle

If a sequence of experiments, €1,¢2, ..., is directed by a stopping
rule, 7, which indicates when the experiment should stop, inference
about 6 should depend on 7 only through the resulting sample.



The Stopping Rule Principle: Example

In an experiment to find out the fraction of the population that
watched a TV show, a researcher found 9 viewers and and 3
non-viewers.

Two possible models:

1. The researcher interviewed 12 people and thus observed
x ~ B(12,0)

2. The researcher questions N people until he obtained 3
non-viewers with N ~ Neg(3,1 — 6)

The likelihood principle implies that the inference about 6 should
be identical if either model was used. A frequentist would draw
different conclusions depending on wether he thought (1) or (2)
generated the experiment.

In fact, H® : § > 0.5 would be rejected if experiment is (2) but not
if it is (1).



The Stopping Rule Principle

“...a hypothesis which may be true may be rejected because it has
not predicted observable results which have not occurred.”
Jeffreys (1961)

“l learned the stopping rule principle from Professor Barnard, in
conversation in the summer of 1952. Frankly, | thought it a
scandal that anyone in the profession could advance an idea so
patently wrong, even as today | can scarcely believe that some
people resist an idea so patently right”

Savage (1962)

Quotes (again) arrived here via Jesus Fernandez-Villaverde (U
Penn)



Main concepts and notation

The main components in Bayesian inference are:

» Data (observables) ZT € RT*"
» A model:

> Parameters 0 € R*
» A prior distribution p(#) : R — R
> Likelihood function p(Z | 0) : RT*" x Rk — R*



The end product of Bayesian statistics

Most of Bayesian econometrics consists of simulating distributions
of parameters using numerical methods.

» A simulated posterior is a numerical approximation to the
distribution p(Z | 8)p(6)

» This is useful since the the distribution p(Z | 8)p(6) (by
Bayes' rule) is proportional to p(6 | Z)

» We rely on ergodicity, i.e. that the moments of the

constructed sample correspond to the moments of the
distribution p(0 | Z)

The most popular procedure to simulate the posterior is called the
Random Walk Metropolis Algorithm



The MCMC with J=1000
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The Histograms of MCMC with J=1000
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The MCMC with J=1000 000
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The Histograms of MCMC with J=1000 000
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Estimated posterior density with J=1000
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Choosing priors

How influential the priors will be for the posterior is a choice:

» It is always possible to choose priors such that a given result is
achieved no matter what the sample information is (i.e.
dogmatic priors)

> It is also possible to choose priors such that they do not
influence the posterior (i.e. so-called non-informative priors)

Important: Priors are a choice and must be motivated.



Combining prior and sample information

Sometimes we know more about the parameters than what the
data tells us, i.e. we have some prior information.

» For a DSGE model, we may have information about " deep”
parameters
» Range of some parameters may be restricted by theory, e.g.
risk aversion should be positive

» Discount rate is inverse of average real interest rates
> Price stickiness can be measured by surveys

» We may know something about the mean of a process



How do we combine prior and sample information?

Bayes' theorem:

PO Z)P(Z) = P(Z|0)P(0)
=
PO|2) = P(ZP’(’}))PW)

» Since P(Z) is constant (conditional on a particular model),
we can use P (Z | 0) P(0) as the posterior likelihood (a
likelihood function is any function that is proportional to the
probability).

We now need to choose P(6)



Choosing prior distributions

The beta distribution is a good choice when parameter is in [0,1]

B (1- x)b_:l xa1
i) = B(a, b)
where ( 0i(b— 1)1
a—1)I(b—1)!
Bla, b) = (a+b—1)!

Easier to parameterize using expression for mean, mode and

variance:
a - a—1
= y X = ———
H a+b at+b-—2
5 ab

(a+b2(a+b+1)




Examples of beta distributions holding mean fixed




Examples of beta distributions holding s.d. fixed




Choosing prior distributions

The inverse gamma distribution is a good choice when parameter
is positive

PU) = 25 (1)) expl=b/)
where
Ma)=(a—1)!

Again, easier to parameterize using expression for mean, mode and
variance:

(a-12(a-2)



Examples of inverse gamma distributions
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Conjugate Priors

Conjugate priors are a particularly convenient:

» Combining distributions that are members of a conjugate
family result in a new distribution that is a member of the
same family

Useful, but only so far as that the priors are chosen to actually
reflect prior beliefs rather than just for analytical convenience



Conjugate Priors: Examples

p(x0)  p(0) p(0]x)
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G(v,0) G(o,8) Gla+v,B+x)



Improper Priors

Improper priors are priors that are not probability density functions
in the sense that they do not integrate to 1.

» Can still be used as a form of uninformative priors for some
types of analysis
» The uniform distribution U(—o00, c0) is popular

» Mode of posterior then coincide with MLE.
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Summing up

It is important to understand what the subjective view of
probability does and does not imply

The Bayesian Principles
Bayesians condition on the data

Priors are chosen by the researcher and must be motivated



That's it for today.



