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Abstract. This paper combines multivariate density forecasts of output growth, inflation
and interest rates from a suite of models. An out-of-sample weighting scheme based on
the predictive likelihood as proposed by Eklund and Karlsson (2005) and Andersson and
Karlsson (2007) is used to combine the models. Three classes of models are considered: a
Bayesian vector autoregression (BVAR), a factor-augmented vector autoregression (FAVAR)
and a medium-scale dynamic stochastic general equilibrium (DSGE) model. Using Aus-
tralian data, we find that, at short forecast horizons, the Bayesian VAR model is assigned
the most weight, while at intermediate and longer horizons the factor model is preferred.
The DSGE model is assigned little weight at all horizons, a result that can be attributed
to the DSGE model producing density forecasts that are very wide when compared with
the actual distribution of observations. While a density forecast evaluation exercise reveals
little formal evidence that the optimally combined densities are superior to those from the
best-performing individual model, or a simple equal-weighting scheme, this may be a result
of the short sample available.
Keywords:Density forecasts, combining forecasts, predictive criteria

1. Introduction

Density forecasts, or fan charts, can help to communicate risks around a central tendency,
or point forecast. Density forecasts are useful tools for inflation-targeting central banks as
they can be used to quantify the probabilities of key variables being outside a given range in
the future. Furthermore, multivariate or joint density forecasts can be useful in predicting
the covariances across different variables of interest.

Under a Bayesian estimation framework, constructing density forecasts using a statistical
model is straightforward, enabling the various types of uncertainty inherent in forecasts to
be incorporated in a coherent fashion. Taking multiple draws from a model’s posterior pa-
rameter distribution allows for parameter uncertainty in the forecasts. Taking many draws
from a model’s assumed distributions for shocks can help to characterise an inherently un-
certain future. But using a single model may not result in an accurate characterisation of
the true degree of uncertainty since the true data-generating process is unknown. Forecast
uncertainty due to model uncertainty can also be considered by combining several models.
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There is considerable evidence that combining point forecasts from multiple models can
improve forecast accuracy, see Timmermann (2006). Much less attention has been paid to
combining density forecasts. Some recent work filling this gap includes Kapetanios et al
(2005), Hall and Mitchell (2004, 2007) and Jore et al (2007). While point forecast com-
binations are usually evaluated according to root mean squared errors (RMSE), evaluating
density forecasts is less straightforward. This is primarily because the true density is never
observed, so computing even an in-sample measure of the accuracy of a density forecast is
less straightforward.

A combined density may have characteristics quite different to those of the individual
densities from which it is constructed, as noted by Hall and Mitchell (2004, 2007). For
example, the weighted linear combination of two normal densities with different means and
variances will be non-normal. So while density forecasts from a combination of models are
more flexible than a density constructed from a single model, whether or not the combined
density provides a more accurate description of the true degree of uncertainty is, in the end,
an empirical question and will depend on the method used to choose weights for individual
models when constructing the combined density.

This paper proposes to combine multivariate density forecasts from a suite of models
consisting of a Bayesian vector autoregression (BVAR), a factor-augmented vector autore-
gression (FAVAR) and a dynamic stochastic general equilibrium (DSGE) model. A weighting
scheme based on predictive likelihoods following Eklund and Karlsson (2005) and Andersson
and Karlsson (2007) is used to combine the models. This weighting scheme also allows for
different weights to be assigned to a given model at different forecast horizons. We evaluate
the combination forecasts following Diebold et al (1998) and Diebold et al (1999) by assess-
ing whether the probability integral transform of a series of observations with respect to the
density forecasts are uniformly distributed and, in the case of the one-step-ahead forecasts,
also independently and identically distributed.

Most of the previous literature on combining density forecasts has focused on univariate
densities, that is, density forecasts for a single variable. Yet in many settings it is of interest
to characterise the joint probabilities of future outcomes of several variables. For instance, a
policy-maker might be interested in the joint probabilities of a target variable and a policy
instrument. In this paper, we construct density forecasts of inflation, GDP growth and the
cash rate using Australian data. Most central banks have a mandate to control inflation
while not causing undue variation in output so these two variables can be viewed as target
variables. The combined densities constructed here can thus be used to characterise the
joint probability of the target variables and answer questions like “What is the probability
that both inflation and GDP growth will be below average 4 quarters from now?” If this
probability is deemed too high, actions can be taken to make this outcome less likely. The
first step would then be to ask what path of the instrument the density forecasts of the
target variables are conditioned on, which motivates the inclusion of the cash rate (the main
instrument of monetary policy in Australia) in the set of variables that we construct density
forecasts for.

Structural models, similar to the DSGE model included in the suite of models presented
here, have become popular at central banks around the world as they can help to tell econom-
ically meaningful ‘stories’ around forecasts. It has also been suggested that DSGE models



COMBINING MULTIVARIATE DENSITY FORECASTS USING PREDICTIVE CRITERIA 3

are competitive with statistical models in terms of point forecast accuracy, for example by
Smets and Wouters (2004) and Adolfson, Andersson et al (2005). This paper expands the
analysis of these papers by comparing density forecasts constructed using a state-of-the-art
DSGE model to density forecasts from purely statistically motivated models.

The rest of the paper is structured as follows. Section 2 outlines the suite of models and
describes how they are estimated. Section 3 presents some density forecasts and discusses
the motivation for using an out-of-sample-based weighting criteria to combine the models.
The predictive-likelihood weighting scheme is outlined here. Section 3 also discusses the
trade-offs implied by choosing the lengths of the training and hold-out samples necessary to
evaluate an out-of-sample predictive criteria. Section 4 describes the data and the model
weights obtained. A univariate and multivariate evaluation of the combined density forecasts
is presented in Section 5. The final section concludes.

2. A Suite of Models

We consider three types of models: a BVAR with Minnesota priors, a Factor Augmented
Vector Autoregression (FAVAR) and a medium-scale DSGE model. The first two are sta-
tistical models with a solid track record in forecasting (see, among others, Litterman 1986,
Robertson and Tallman 1999 and Stock and Watson 2002). The structural DSGE model,
on the other hand, has a shorter history as a forecasting tool, but is becoming increas-
ingly popular in central banks. All three models restrict the dynamics of the variables of
interest in order to avoid in-sample over fitting, which is a well-known cause of poor fore-
casting performance in unrestricted models (see, for instance, Robertson and Tallman 1999
and references therein). The BVAR shrinks the parameters on integrated variables in an
unrestricted VAR towards the univariate random walk model. The FAVAR uses principal
components to extract information from a large panel of data in the form of a small number
of common factors. The DSGE model uses economic theory to restrict the dynamics and
cross-correlations of key macroeconomic time series. Each model uses a different data set,
all including a larger number of variables than the three we are interested in, that is, GDP
growth, inflation and the cash rate. Each model is briefly presented below along with an
overview of how the individual models are estimated.

2.1. BVAR. The BVAR can be represented as:

ybvar
t =

p∑
i=1

Aiy
bvar
t−i +B + εt (2.1)

where εt ∼ N(0,Σbvar), B is a vector of constants and ybvar
t is an m× 1 vector that includes

quarterly data on the following variables: trade-weighted measures of G7 output growth, G7
inflation and a simple average of US, euro area and Japanese interest rates; the corresponding
domestic variables we are interested in forecasting (GDP growth, trimmed mean underlying
inflation and the cash rate); and the level of the real exchange rate. Variables in growth
rates are approximated by log differences and foreign variables are treated as exogenous to
the domestic variables. We consider three specifications of Equation (2.1) denoted BVAR2,
BVAR3 and BVAR4 corresponding to the number of lags p = 2, 3 and 4 respectively.
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Minnesota-style priors, see Doan et al (1984) and Litterman (1986), are imposed on the
dynamic coefficients Ai. The prior mean on the coefficient on the first lag of the dependent
variable in each equation is set equal to zero for variables in changes and to 0.9 for the three
variables specified in levels (both interest rate variables and the real exchange rate). The
prior mean on coefficients for all other lags is set to zero and is tighter on longer lags than
on short lags. This prior centres the non-stationary domestic and foreign price and output
levels on a univariate random walk, and centres domestic and foreign interest rates and the
real exchange rate (stationary variables) on AR(1) processes.1 A diffuse prior is placed on
the deterministic coefficients of the unit root processes and the constants of the stationary
processes in B and we impose a diffuse prior on the variance covariance matrix of the errors,
p(Σbvar) ∝ |Σbvar|−(m+1)/2.

To draw from the posterior distribution of parameters under this Normal-Diffuse prior,
the Gibbs Sampler described in Kadiyala and Karlsson (1997) was used, with the number
of iterations set at 10 000 and the first 500 draws used as a burn-in sample to remove any
influence of the choice of starting value (the OLS estimate of Σbvar).

2.2. FAVAR. Factor models are based on the idea that a small number of unobserved factors
ft =

(
f1t . . . fkt

)′
can explain much of the variation between observed economic time

series. Once estimated, these factors can be included as predictors in an otherwise standard
VAR, forming a factor-augmented VAR, see Bernanke et al (2005). The FAVAR therefore

takes the same form as Equation (2.1), where yfavar
t =

(
z′t f ′t

)′
and zt ≡

(
∆gdpt πt it

)′
is the vector containing the three domestic variables we are interested in forecasting.

Imposing a diffuse prior on the parameters of the model delivers the standard result that
the covariance matrix of the errors Σfavar is distributed as inverse Wishart (a multivariate
generalisation of the inverse gamma distribution), while the regression coefficients follow a
normal distribution, conditional on Σfavar; see, for instance, Kadiyala and Karlsson (1997).

We use principal-components analysis following Stock and Watson (2002) to estimate ft

from a static representation of a dynamic factor model. The static representation is:

Xt = Λft + et (2.2)

where Xt represents a large data panel of predictor variables (demeaned and in stationary
form), Λ is a matrix of factor loadings and et is an error term (with zero mean) which
may be weakly correlated across time and series. The k × 1 vector of static factors ft

can include current and lagged values of the dynamic factors. When lags are included in the
dynamic factor representation, the static factors in Equation (2.2) are estimated by principal
components of a matrix that augments the data panel Xt with lags of the data panel. The
principal-component estimator of the factors is f̂t = V ′Xt, where V represents the matrix of
eigenvectors corresponding to the k largest eigenvalues of the variance covariance matrix of
the data panel, see Stock and Watson (2002) and Boivin and Ng (2005).

The data series included in Xt are the same as in Gillitzer and Kearns (2007), except that
the three foreign variables used in the BVAR are also included. Up to three static factors

1How strongly the overall and cross-equation elements of this prior are imposed is governed by two hyper
parameters which are set at 0.5 and 0.2 respectively. Harmonic lag decay is also imposed. For a useful
discussion of the Minnesota prior see Robertson and Tallman (1999).
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(k = 1, 2, 3) are included in the model, which are estimated assuming a one-lag dynamic
factor model representation. The first three factors explain approximately 25 per cent of
the total variation of the data panel. Finally, we allow for either 2 or 3 lags in the FAVAR
itself (p = 2, 3), which means that in total, six different specifications of the factor model
are considered, each denoted FAVARkp.

One drawback of the principal-components approach is that it gives no measure of the
uncertainty surrounding the factor estimates f̂t, something that could be important for
determining the overall uncertainty surrounding the forecasts. Bai and Ng (2006) show that
when the number of series included in the data panel n grows faster than the number of
observations T (that is T/n → 0), then the impact from using the estimated regressors f̂t

on the variance of the estimated model parameters is negligible. While this condition is not
met here, we expect any influence on the variance of the FAVAR’s parameters to be factored
into the predictive criteria used to combine the different model forecasts.

2.3. DSGE Model. The DSGE model is a medium-scale open economy New Keynesian
model that follows the open economy extension of Christiano et al (2005) by Adolfson et al
(2007) closely. It consists of a domestic economy populated with households that consume
goods, supply labour and own the firms that produce the goods. Domestic households trade
with the rest of the world by exporting and importing consumption and investment goods.
Consumption and investment goods are also produced domestically for domestic use. The
domestic economy is small compared to the rest of the world in the sense that developments in
the domestic economy are assumed to have only a negligible impact on the rest of the world.
The model is rich in the number of frictions and shocks, which appears to be important for
matching the data.

In order to estimate the model, the structural equations are linearised and the model is
then solved for the rational expectations equilibrium. This can be represented as a reduced-
form VAR. Since many of the theoretical variables of the model are unobservable, the model
is estimated using the Kalman filter. To do this, the solved model is first put in state space
form as follows:

xdsge
t = Fdsgex

dsge
t−1 + udsge

t (2.3)

ydsge
t = µ+Hxt + edsge

t (2.4)[
udsge

t

edsge
t

]
∼ N

(
0,

[
Q 0
0 R

])
(2.5)

where the theoretical variables are collected in the state vector xdsge
t and the observable

variables are collected in the vector ydsge
t . The state transition Equation (2.3) governs the

law of motion of the state of the model and the measurement Equation (2.4) maps the state
into the observable variables. The matrices F , µ, H and Q are functions of the parameters
of the model. The observable variables included in ydsge

t are the real wage, real consumption
growth, real investment growth, the real exchange rate, the cash rate, employment, real
GDP growth, real exports and real imports growth (adjusted), trimmed mean underlying
inflation, real foreign (G7) output growth, G7 inflation and the foreign interest rate. Again,
variables in growth rates are approximated by log differences.
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The covariance matrix R of the vector of measurement errors edsge
t in Equation (2.4) is

chosen so that approximately 5 per cent of the variance of the observable time series are
assumed to be due to measurement errors. The model is estimated using Bayesian methods
and the posterior distributions of the 52 structural parameters are simulated using 1 000 000
draws from the Random-Walk Metropolis Algorithm, where the first 400 000 are removed
as a burn-in sample. Further details of this model are available on request.

3. Combining the Model Forecasts

While each model included in the suite is estimated using different time series, the three
core variables of interest - GDP growth, trimmed mean underlying inflation and the cash
rate - are included in the data series for all three. To simplify notation, these three variables
are collected in the vector zt ≡

(
∆gdpt πt it

)′
. It is each model’s forecasting performance

of the joint density p(zt+h|Ωt), where Ωt represents information available at time t, that will
be used to combine the models. To simplify notation in what follows we leave out Ωt and
use pt(zt+h) to denote an h step-ahead conditional predictive density but the dependence on
the information set available at time t should be remembered.

The three models and how they map into the observable variables that we are interested
in can be represented (individually) by a state space system of the form

xk,t = Fkxk,t−1 + Ckuk,t (3.1)

zk,t = Dkxk,t + ek,t (3.2)

where (3.1) is the state transition equation and (3.2) is the measurement equation. The
subscript k is used to index the models and xk,t is the vector of model k’s state variables at
time t. The matrices Fk and Ck will depend on the functional forms of the models and the
estimated model-specific posterior parameter distributions while the matrix Dk maps each
model’s state variables into the vector of interest zk,t.

3.1. Constructing Density Forecasts. The approach to constructing pt(zk,t+h) is similar
for each model. Multiple draws are taken from each model’s posterior parameter distribution

and for each draw j, a potential multivariate realisation z
(j)
k,t+h is constructed by iterating

Equations (3.1) and (3.2) forward up to horizon h. At each iteration, a vector of shocks

u
(j)
k,t+h is drawn from a mean zero normal distribution where the variance is itself a draw from

the relevant model’s parameter distribution (that is, u
(j)
k,t+h ∼ N(0,Σ

(j)
k )). Repeating this

procedure many times at each forecast horizon allows us to build up a complete picture of the
forecast probability distribution.2 To complete the density forecast, the potential realisations
are ordered at each ‘slice’ in the forecast horizon. Each ordered set of realisations represents
the h step-ahead conditional density forecast for zk,t+h. The densities can be represented
graphically by shading different probability interval bands in different colors, where each
band represents a range in which we expect future realisations of zk,t to fall in with a certain
probability. As an example, the density forecasts that would have been obtained using data

2The densities forecasts presented in this paper were all constructed using 1000 draws.
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up to 2005:Q3 with the BVAR2 model are presented in Figure 1. The median projection
along with 50 and 90 per cent probability intervals are shown.

Figure 1. BVAR2 Density Forecasts
2005:Q4-2007:Q3

Trimmed mean inflation

2007

●●

●●
●

●●
●

2

4

6

2

4

6

●
●

●●●
●●

●

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Cash rate
Three-month average

GDP growth

Year-ended

Year-ended

●●
●

●
●●●●

3

4

5

6

7

3

4

5

6

7

2004200119981995

%

%

%

%

%

%

—  Median ■  50 per cent probability intervals
●  Actual outcomes ■  90 per cent probability intervals

A combination density forecast, denoted pc
t(zt+h), can be constructed as a weighted linear

combination (or ‘linear opinion pool’) of the competing model forecasts:

pc
t(zt+h) =

K∑
k=1

pt(zk,t+h)wk,h (3.3)

where wk,h represents the weight assigned to model k when forecasting at horizon h. The
remainder of this section focuses on how to go about choosing these weights.

3.2. Equal weights. The simplest and most straightforward weighting scheme is to put
equal weight on all models in the suite. In this case, wk,h = 1/K at each forecast horizon.
Apart from its simplicity, a priori this approach seems to have little going for it. For example,
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an over-parameterised model that forecasts poorly would still be assigned substantial weight.3

But Timmermann (2006) has shown that such a scheme performs well when combining point
forecasts and could also prove useful in a density combination context. One reason for this
unexpected success may be that an equal-weighting scheme is robust to possible small-sample
problems that may arise when choosing weights ‘optimally’.

3.3. Posterior Probability Weights. An alternative and intuitive approach to combining
models can be derived in a Bayesian framework. Each model’s marginal likelihood, p(yk),
could be used to generate posterior probability weights, a method known as Bayesian Model
Averaging; see, for example, Raftery et al (1997). That is, the weight of model k would be
given by

wk =
p(yk)p(Mk)∑K
i=1 p(yi)p(Mi)

(3.4)

where p(Mk) represents any prior beliefs about model k being the true model.
This method is attractive as models that appear to describe the observed data better

are assigned a higher weight. But a potential problem with using an in-sample measure to
generate model weights is that too much weight may be placed on over-parameterised models
with good in-sample fit even if they perform poorly when forecasting.4

A further issue is that the marginal likelihood reflects the entire fit of a model. The weights
from Equation (3.4) will depend upon each model’s description of all the variables making
up yk, but yk differs between models.

Another approach that can be used to help control for in-sample over-fitting, and to focus
on the key variables of interest, is an out-of-sample weighting scheme based on predictive
likelihoods, as demonstrated in a univariate application by Andersson and Karlsson (2007)
and Eklund and Karlsson (2005). Here we extend their approach to a multivariate setting.

3.4. Predictive-likelihood Weights. A weighting scheme based on predictive likelihoods
requires the available data to be split into two parts. A training sample is used to estimate
the parameters of each model, and the remaining hold-out sample is used to evaluate each
model’s out-of-sample forecasting performance. Asymptotically, that is, with an infinitely
long hold-out sample, predictive likelihoods would tend to put all the weight on the best
model. In practice, however, there is a trade-off between the length of training and hold-out
samples. With a short training sample, a model’s parameters will be imprecisely estimated.
But lengthening the training sample necessarily shortens the hold-out sample, which makes
the evaluation of the predictive criteria less precise. Therefore, in small samples, a poor
model may still be assigned substantial weight. Worse still, if there are several poor models,
their combined weight can be large.

3Also, models that were quite similar would tend to be ‘over-represented.’
4While it is possible to view the marginal likelihood as an out-of-sample measure, this interpretation

relies on the predictive content of the prior (see, for example, Adolfson, Lindé and Villani 2005 and Eklund
and Karlsson 2007). This will only be true for the DSGE model in our suite of models and, in that case,
the marginal likelihood is likely to be sensitive to the choice of prior. For both the BVAR and FAVAR
models, where either diffuse or relatively uninformative priors are imposed, the marginal likelihood reflects
an in-sample measure of fit.
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As in Andersson and Karlsson (2007), we calculate a series of small hold-out sample
predictive likelihoods (PL), as shown in Equation (3.5). This involves a recursive forecasting
scheme where the training sample of initial size l is expanded throughout the forecasting
exercise.5 We also restrict our attention to each model’s predictive performance of the subset
of variables zk,t as set out in Equation (3.2).

PLk,h = p(zhold-out
k,h |ytraining

k ) =
T−h∏
t=l

p̂(zk,t+h|yk,t) (3.5)

In Equation (3.5), zhold-out
k,h denotes the (T − h − l) hold-out observations used to evalu-

ate model k at horizon h, ytraining
k represents the (expanding) training sample and yk,t =(

yk,1 . . . yk,t

)′
represents each individual training sample relevant to iteration t in the

recursive forecasting exercise. To calculate Equation (3.5), for each model k we use the
multivariate normal distribution and take an average across multiple draws (j) from model
k’s predictive distribution of zk,t+h. That is,

p̂(zk,t+h|yk,t) = n−1

n∑
j=1

p(z
(j)
k,t+h|yk,t) (3.6)

where n = 500 and p(z
(j)
k,t+h|yk,t) is multivariate normal. This is the same approach used by

Andersson and Karlsson (2007).
The predictive-likelihood weights can be calculated by replacing the marginal likelihood

in Equation (3.4) with the predictive likelihood of Equation (3.5) as follows:

wk,h =
PLk,hp(Mk)∑K
i=1 PLi,hp(Mi)

. (3.7)

In the analysis below, we assign an equal prior probability to each model being the true
model, that is, p(Mk) = 1/K.6

4. Implementation and Results

In this section we describe the data and present the results of the weighting scheme. We
also attempt to shed some light on the importance of the covariances of the forecasts errors
for the weights assigned to each model as well as compare how a model ranking based on

5Theoretically, either a fixed- or rolling-window forecasting scheme would be preferred to accommodate
the idea that the hold-out sample should tend towards infinity. With dynamic models, however, a fixed
estimation window is not suitable as forecasts would lack information available at the time of forecasting.
The rolling-window scheme is also not practical when faced with a short sample of data. We therefore prefer
the recursive approach.

6We also generated weights numerically following Hall and Mitchell (2007) when choosing the set of
weights that minimise the Kullback-Leibler divergence between the combined density forecast and the true
but unknown density. When considering a small number of models, the weights obtained were similar to
those of the predictive-likelihood approach, but this Kullback-Leibler information criterion weighting scheme,
which involves a numerical search for the optimal set of weights, becomes impractical when considering a
larger model space.
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point forecast accuracy compare to the ranking implied by the weights from the predictive
likelihood scheme.

4.1. The Sample. The data sample is from 1992:Q1 to 2007:Q3 and as discussed above,
a recursive out-of-sample forecasting scheme was used to evaluate each model and generate
model weights. The first l = 36 observations (1992:Q1-2000:Q4) were used as the initial train-
ing sample to estimate each model before constructing density forecasts up to eight quarters
ahead (2001:Q1-2002:Q4). The training sample was then extended by one observation, the
models re-estimated and density forecasts over the next eight quarters (2001:Q2-2003:Q1)
constructed. Model weights were generated sequentially by repeating this exercise over the
remaining sample. The final set of model weights were based on a hold-out sample of 27
observations at the one-step-ahead forecast horizon and 19 observations at the eight-step-
ahead horizon (the final training sample was between 1992:Q1 and 2007:Q2, which allows
one one-step-ahead forecast to be compared to the final observation). It should be noted
that the DSGE model was only re-estimated every four quarters to save on computation
time.

4.2. Model Weights. Table 1 shows the final set of model weights (using all observations in
the hold-out sample) according to the predictive-likelihood weighting scheme when forecast-
ing one, two, four and eight quarters ahead. Note that a simple unrestricted VAR of GDP
growth, trimmed mean inflation and the cash rate (with two to four lags) was also included
in the weighting scheme as a benchmark model. How the predictive-likelihood weights evolve
throughout the hold-out sample (as the number of observations used to construct the weights
increase) is shown in Figure 2 for the BVAR2, FAVAR12 and DSGE models.

Table 1: Predictive Likelihood Weights at 2007:Q3
Forecast horizon (h)

1 2 4 8
BVAR4 0.22 0.32 0.00 0.00
BVAR3 0.18 0.11 0.00 0.00
BVAR2 0.25 0.07 0.01 0.00
FAVAR33 0.00 0.00 0.00 0.00
FAVAR32 0.00 0.00 0.02 0.01
FAVAR23 0.00 0.00 0.00 0.00
FAVAR22 0.00 0.18 0.35 0.13
FAVAR13 0.00 0.00 0.02 0.00
FAVAR12 0.03 0.25 0.59 0.84
DSGE 0.00 0.00 0.00 0.00
VAR4 0.02 0.04 0.00 0.00
VAR3 0.30 0.02 0.00 0.00
VAR2 0.00 0.00 0.00 0.00
Notes: Weights based on maximum length (27 observations) of hold out sample.

Table 1 shows that, for forecasting at short horizons, the BVAR model is assigned the
most weight. The BVAR specified with 2 lags is preferred at the one-quarter-ahead forecast
horizon while 4 lags are preferred at the two-quarter-ahead horizon. The benchmark VAR
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Figure 2. Predictive-likelihood Weights
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model specified with 3 lags also receives substantial weight at the one-quarter-ahead forecast
horizon. When forecasting at intermediate and longer horizons, the FAVAR model is assigned
the majority of the weight. The FAVAR specified with two lags and either one or two
factors seems to do the best. Interestingly, the DSGE model is assigned zero weight at all
forecast horizons. This result can be attributed to the large forecast error variance implied
by the DSGE model. As we will see in Section 5, the DSGE model’s density forecasts were
typically too wide (the true degree of uncertainty was over-estimated) when compared with
the distribution of actual observations in the sample.

As discussed above, combining weights ‘optimally’ could be troublesome when faced with
a small sample of data. Therefore, we also consider an equal-weighting scheme, which assigns
a one-third weight (wk,h = 1/3) to the BVAR2, FAVAR12 and DSGE models at all horizons
and in all time periods. While an equal-weighting scheme across all 13 models shown in
Table 1 could have been used, that approach would tend to overweight the FAVAR models
(of which there are 6 different specifications) and underweight the others, in particular the
DSGE model.

To give a flavour of what the combination density forecasts may look like in a given quarter,
Figure 3 shows a cross-section of the four-quarter-ahead density forecasts that would have
been made in 2005:Q3 when using the predictive-likelihood and equal-weighting schemes
(using weights that would have been available at the time of forecasting). The individual
BVAR2, FAVAR12 and DSGE model forecasts are also shown to give an idea of how the
combination forecasts differ.
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Figure 3. Four-quarter-ahead Density Forecasts
Made in 2005:Q3
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Looking at Figure 3, a couple of points are worth making. The predictive-likelihood
combination density forecasts are typically similar to the FAVAR12 model’s density forecasts
since that model is given a large weight at the four-quarter-ahead forecast horizon. It is also
clear that the DSGE model’s density forecasts are characterised by a much larger degree
of uncertainty than is the case with the other models or the combination density forecasts.
Finally, the equally weighted combination density forecast for the cash rate has a ‘fat’ right-
hand tail, suggesting that in 2005:Q3, according to this forecast, the risks to the central cash
rate projection in four quarters time were somewhat skewed to the upside.
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4.3. Comparing multivariate and univariate weights. The predictive likelihood scheme
above rewards models that accurately describe the covariances of the forecast errors across
variables. To shed some light on the importance of these covariances for the weights assigned
above, we can compare the weights from the multivariate predictive likelihood to weights
calculated from predictive likelihoods of density forecasts for the individual variables in zt.
This exercise suggests that when predicting single variables, a larger number of models re-
ceive more weight. For instance, there is no model that receives more weight than 20 per
cent for forecasting GDP growth only at the 8 quarter horizon, but there are 5 models that
receive a weight of more than 10 per cent. As can be seen in Table 1, the multivariate
predictive likelihood weights are much more concentrated and the FAVAR12 is assigned a
weight of 84 per cent at the 8 quarter horizon. This may at first suggest that the covari-
ances are important for the weights assigned. However, a more careful analysis suggest that
this is not the case. By computing the predictive likelihoods by stacking individual variable
forecasts and imposing zero error covariances, the weights become very similar to those of
the full multivariate exercise. This suggests that it is the fact that the same models tend to
produce accurate density forecasts for all variables that lead to the concentration of weights
in the multivariate case, not that some models are better at predicting the covariances of
the forecast errors across variables. In general, these covariances turn out to be small, which
explains the similarity of the results to when a zero covariance across variables is imposed.

4.4. Point and density forecast performance. The predictive likelihood is not an ab-
solute measure of forecasting performance, but rather, it is a measure of forecasting accuracy
relative to the variance implied by the model (see Andersson and Karlsson 2007 and Eklund
and Karlsson 2007). This makes the predictive likelihood appealing when evaluating den-
sity forecasts from different models, although the ranking of models could be quite different
to that obtained according to RMSEs based on point forecasts. For the model suite used
here, this is indeed the case. Table 2 below reports the RMSE at different horizons for each
variable for the BVAR2, FAVAR12 and DSGE models.

The BVAR2 outperforms the FAVAR12 in terms of RMSE for all variables and at all
horizons. Still, the FAVAR12 is assigned a weight of 84 per cent at the 8 quarter horizon.
Similarly, the DSGE has the lowest forecast RMSE of all models for GDP growth at the 8
quarter horizon. Still, it is assigned zero weight both by the multivariate predictive likelihood
and the variable-by-variable predictive likelihood. For a policy maker concerned with risks or
uncertainty surrounding forecasts, looking at historical RMSEs may thus be quite misleading.
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Table 2: RMSE results
Forecast horizon (h)

Model/Variable 1 2 4 8
GDP Growth
BVAR2 0.41 0.43 0.45 0.46
FAVAR12 0.55 0.46 0.46 0.48
DSGE 0.54 0.46 0.45 0.44

Trimmed-mean inflation
BVAR2 0.16 0.16 0.13 0.14
FAVAR12 0.18 0.18 0.14 0.14
DSGE 0.18 0.21 0.19 0.16

Cash Rate
BVAR2 0.23 0.39 0.54 0.51
FAVAR12 0.26 0.47 0.62 0.60
DSGE 0.39 0.55 0.73 0.77
Notes: Results are calculated over the sample 2001:Q1 to 2007:Q3. RMSE is the Root Mean Squared Error

between the series of model forecasts and subsequent actual outcomes in percentage points.

5. Evaluating Density Forecasts

Accuracy is obviously a desirable feature of forecasts. For point forecasts, accuracy is
usually interpreted to mean that the forecast errors are unbiased and small according to
RMSEs. For density forecasts, accuracy can be interpreted in a statistical sense by comparing
the distribution of observed data with the forecast distribution. Given a large enough sample
of data, if a density forecast is providing an accurate characterisation of the true degree
of uncertainty, that is, it provides an accurate description of reality, then we would expect
observations to fall uniformly across all regions of the distribution that are forecast to contain
the same probability density. As an example, if a density forecast suggests there is a 10 per
cent chance of GDP growth falling between 3.5 and 3.7 per cent at a given forecast horizon,
then, if economic conditions at the time of forecasting could be replicated 100 times, we
would expect 10 actual observations to fall between 3.5 and 3.7 per cent. Diebold et al
(1998) employ this result to formally evaluate density forecasts; an approach that avoids
both the need to specify the unknown true density and the need to specify a loss function
for the user of the forecasts.

5.1. Probability Interval Transforms. Diebold et al ’s (1998) approach to evaluating
univariate density forecasts is based on the probability integral transform (pit) of a sequence
of n univariate observations {yt+h}nt=1, with respect to the h-step-ahead density forecasts
{pt(yt+h)}nt=1. Each of the transformed observations or pits {vt+h}nt=1 reflects the probability
(according to the density forecast) that an outcome yt+h will be less than or equal to what
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was actually observed. That is,

vt+h =

∫ yt+h

−∞
pt(u)du, t = 1, . . . , n (5.1)

Equation (5.1) links where an actual observation falls relative to the percentiles of the fore-
casted distribution. For example, an actual observation that falls at the median of the
density forecast would receive a pit value of 0.5. For an observation that falls in the upper
tail, say at the 90th percentile, the pit value would be 0.9. If a sequence of density forecasts
coincides with the true data-generating process, then the sequence of pits {vt+h}nt=1 will be
uniform U(0, 1) and in the case where h = 1, {vt+h}nt=1 are both U(0, 1) and independently
and identically distributed (iid). In other words, if the density forecasts are not misspecified,
over a large enough sample, realisations should fall over the entire range of the forecasted
density and with a probability equal to the probability specified in the density forecast.

Diebold et al (1999) show that the probability integral transform approach to evaluating
density forecasts can be extended to the multivariate case.7 Let pt(zt+h) again denote a joint
density forecast of the 3× 1 vector of interest zt+h = ( z1,t+h z2,t+h z3,t+h )′ made at time
t and suppose we have n such forecasts and n corresponding multivariate realisations. After
factoring the joint density into the product of conditional densities,

pt(zt+h) = pt(z3,t+h|z2,t+h, z1,t+h)pt(z2,t+h|z1,t+h)pt(z1,t+h) (5.2)

the probability integral transform for each variable in the multivariate realisations can be
taken with respect to the corresponding conditional distribution. This creates a set of three
pit sequences, each of length n. If the joint density forecasts correspond to the true con-
ditional multivariate density, then these three transformed sequences will each be U(0, 1),
as will the 3n × 1 vector formed by stacking the individual sequences. As before, in the
one-step-ahead case they will also be iid. Since the joint density in Equation (5.2) can be
factored in six ways, there are six equivalent pit sequences that can be used to evaluate the
multivariate density forecasts.8

So evaluating density forecasts can effectively be reduced to testing whether an observed
series is U(0, 1), and in the case of the one-step-ahead forecasts, whether it is also iid. Before
presenting the results, it must be highlighted that in the current context there are reasons
why tests of uniformity and independence may be unreliable and it would be unwise to
over-emphasise the results from these tests. Given the small sample of data on which we can
evaluate the forecasts, it will always be difficult to distinguish between forecasting ability and
luck. Also, as Hall and Mitchell (2007) and others have noted, the way in which dependence
in the forecasts affects tests for uniformity is unknown (as is the impact of non-uniformity for
tests of independence). And given that serially dependent forecasts are entirely consistent
with correctly-specified density forecasts at a forecast horizon greater than one-step-ahead
(see Elder et al 2005 for a good discussion of this point), results must be treated with
some caution. In addition, formal testing of the densities presented in this paper is further

7See also Clements and Smith (2000) for an application of the multivariate pit approach.
8In the results that follow, the multivariate evaluation was based on factoring the joint density of zt as

follows: pt(zt+h) = pt(∆gdpt+h|πt+h, it+h)pt(πt+h|it+h)pt(it+h).
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complicated by the fact that we allow for parameter uncertainty when constructing the
forecasts.

5.2. A Visual Assessment. We present a visual assessment of the hypothesis that the pit-
values corresponding to the one-quarter-ahead density forecasts are uniformly distributed in
Figure 4. The results for the two- and four-quarter-ahead forecasts are provided in Appendix
A (a visual assessment at longer forecast horizons is difficult due to the small number of
observations available to evaluate the forecasts). This method is widely used in the literature
and may also prove revealing as to how the density forecasts are misspecified. We conduct
both a univariate and multivariate evaluation of the BVAR2, FAVAR12 and DSGE models,
as well as the two combined density forecasts based on the predictive-likelihood and equal-
weighting schemes.

Since a number of observations are used up when calculating the predictive-weighting
criteria, the effective sample on which we can evaluate the combined densities is reduced. To
evaluate the combined one-quarter-ahead density forecasts, 26 observations were available,
while only 12 observations could be compared to the combined eight-quarter-ahead density
forecasts.9 To allow for a fair comparison with the predictive-likelihood weighting scheme,
this reduced evaluation sample was also used to evaluate the equal-weighting scheme as well
as the models individually.

In Figures 4, 5 and 6, the horizontal line represents the theoretical distribution that pit-
values would follow in the case of correctly specified density forecasts. The closer the sample
histogram is to this U(0, 1) distribution, the better the density forecast. A hump-shaped
histogram would be suggestive of density forecasts that are over-estimating the true degree of
uncertainty, with too many pit-values close to 0.5 (a result of too many actual observations
falling around the centre of the density forecasts over time). A histogram with peaks near 0
and 1, on the other hand, would suggest too small a probability is being assigned to outcomes
in the tails of the forecasted distribution.

Some broad conclusions can be taken from the figures. It seems clear that the distributions
of pit-values corresponding to the DSGE model’s forecasts (the third row in each of the
figures) violate the uniformity hypothesis. For both the univariate and multivariate cases,
over the evaluation period, the DSGE model’s density forecasts were too wide when compared
to the actual distribution of observations. The hump-shaped distribution of pit-values is
particularly evident at the two- and four-quarter-ahead forecast horizons (Figures 5 and 6).

Looking at the univariate cases (the first three columns in each figure) it appears that,
across the different models and weighting schemes, the density forecasts for inflation perform
the best. Apart from the DSGE model, the distribution of pit-values for the inflation forecasts
show a reasonable coverage in the tails of the distribution, with the overall distribution
typically close to the U(0, 1) line. The distribution of the cash rate variable seems to be

9To see this, consider the sequence of eight-quarter-ahead combined density forecasts. The first such
forecast can only be made once the first set of eight-quarter-ahead weights are constructed (which is in
2002:Q4). And being an eight-quarter-ahead forecast, it is evaluated against the 2004:Q4 observation. A
second eight-quarter-ahead forecast can be made in 2003:Q1 (using an updated set of eight-quarter-ahead
weights) and evaluated in 2005:Q1. This pattern continues until the sample is exhausted, which occurs after
12 eight-quarter-ahead forecasts are made.
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Figure 4. Pit Distributions
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Notes: Rows in the figure refer to the three individual model density forecasts and the two combination
density forecasts. The first three columns refer to the pit-values corresponding to the univariate
one-quarter-ahead density forecasts for GDP growth, inflation and the cash rate. The final column
refers to the multivariate forecasts where the histogram is constructed using the ‘stacked’ sequence
of pit-values as described in the main text. The height of each bin (vertical axis) reflects the number
of observations that fell within different percentile bands (horizontal axis) over the evaluation period
(26 observations in total in the univariate cases and 26 observations for each of the three variables
in the multivariate case).
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the most poorly forecast across the various methods. Turning to the multivariate cases,
it seems that the FAVAR12 model provides the best description of the joint distribution
of GDP growth, inflation and interest rates over the evaluation period. This seems to be
true at each forecast horizon. The combination density forecasts constructed using the
predictive-likelihood weights also perform well, although it is not clear that the combination
density performs that much better than the individual FAVAR12 model’s forecasts. There is
perhaps some evidence that the optimally combined density forecasts outperform those based
on an equal-weighting scheme, although this is most likely due to the poor performance of
the DSGE model’s density forecasts, which receive one-third weight in the equal-weighting
scheme.

5.3. Formal Tests. Formal statistical tests of the uniformity hypothesis have also been
suggested.10 For example, Berkowitz (2001) suggests taking a further transformation using
the standard normal inverse cumulative density function to convert the test for uniformity
into a more powerful test for normality. In Appendix A we present a variation of the
Berkowitz-type test for normality which allows serial correlation in the forecasts (see Elder
et al 2005). While the test delivers broadly the same conclusion as the visual assessment,
given the difficulties faced when assessing the uniformity (or normality) hypothesis discussed
earlier, the results should still be treated with some caution.

To test the hypothesis that the pit-values corresponding to the one-quarter-ahead density
forecasts are iid, Ljung-Box (LB) tests for up to fourth-order serial correlation are shown in
Table 3. LB tests on the first three moments were considered to allow for the possibility of
higher-order dependence. Except for the univariate density forecasts for inflation, the tests
do show evidence of serial correlation. This suggests that the GDP growth, cash rate and
multivariate one-quarter-ahead density forecasts are misspecified to some extent. Taking the
multivariate evaluation as an example, the LB tests show dependence in the stacked sequence
of pit-values in all of the first three moments when forecasting with the FAVAR12 model.
The BVAR2 model seems to fare better, although there is evidence of serial correlation
in the second moment. Similarly, pit-values corresponding to the predictive-likelihood and
equal-weighting scheme combination density forecasts show evidence of serial correlation in
the second moment, which is inconsistent with the hypothesis of correctly-specified density
forecasts at the one-step-ahead forecast horizon.

10Corradi and Swanson (2006a) provide a detailed summary. See also Hall and Mitchell (2004) for an
application of the various testing procedures to density forecasts of UK inflation.
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Table 3: Ljung-box Tests for Independence
One-quarter-ahead forecast horizon

GDP growth Inflation Cash rate Multivariate
Model/Moment 1 2 3 1 2 3 1 2 3 1 2 3
BVAR2 0.07 0.36 0.04 0.78 0.70 0.95 0.66 0.04 0.08 0.90 0.00 0.66
FAVAR12 0.19 0.62 0.39 0.20 0.56 0.20 0.01 0.21 0.03 0.00 0.06 0.01
DSGE 0.77 0.79 0.55 0.85 0.99 0.96 0.14 0.99 0.25 0.00 0.27 0.07

PL 0.09 0.08 0.10 0.94 0.76 0.95 0.94 0.03 0.39 0.91 0.00 0.87
EQUAL 0.21 0.41 0.21 0.94 0.84 0.95 0.75 0.11 0.34 0.58 0.00 0.56

Note: Numbers in the table are p-values corresponding to Ljung-Box tests of up to fourth-order serial correlation in the

pit-values. Numbers in bold indicate that the null hypothesis is rejected at the 10 per cent significance level.

Overall, based on these results, it is hard to draw strong conclusions about the accuracy
of the combined density forecasts. But one result that does seem clear is that the density
forecasts constructed using the DSGE model were inconsistent with the data; the density
forecasts were too wide when compared with the actual distribution of observations. One
possible reason for the large forecast uncertainty implied by the DSGE model could be
the many restrictions imposed on the dynamics of the model. If the data ‘disagree’ with
these restrictions, larger shocks will be needed to explain the patterns seen in the data
and, as a consequence, greater shock uncertainty will be introduced into the forecasts. So
while DSGE models have been shown to produce relatively accurate point forecasts (see, for
example, Adolfson, Andersson et al 2005), our results suggest they may be less successful at
characterising the uncertainty surrounding point forecasts. However, this does not mean that
density forecasts from DSGE models are not useful for policy analysis. As structural models
with economically interpretable state variables, DSGE models still have the advantage of
lending themselves to scenario analysis and ‘story telling’; something that purely statistical
models cannot do. This is equally true for density forecasts as it is for point forecasts.

6. Conclusion

In this paper, we have looked at a relatively unexplored area of the forecast combination lit-
erature, that of combining multivariate density forecasts. We have used predictive-likelihood
scores to combine density forecasts produced by a suite of models consisting of a BVAR, a
FAVAR and a DSGE model. The weighting scheme suggests that the DSGE model should
be assigned a very low weight in the combined density forecast. Inspecting the probability
integral transforms of the models’ forecasts suggests that this low weight is due to the fact
that over the evaluation sample the DSGE produced density forecasts that were too wide
when compared with the actual distribution of observations.

We also performed both a visual and formal assessment of the performance of the density
forecasts using probability integral transforms that should produce uniform distributions if
the uncertainty characterised by the forecasts is correctly modelled. Overall, this exercise
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returned mixed results, and it is not clear that the combined forecasts are superior to those
of the best-performing individual model or an equal-weighting scheme. This may be a result
of the short sample available to evaluate the forecasts. However, broadly, the evaluation
exercise suggested that individual models that received a large weight in the combined density
outperformed models that received a low weight.

We also find that a model that performs well in terms of point forecast accuracy does not
necessarily produce the most accurate density forecasts. For instance, the BVAR2 dominates
the FAVAR12 in terms of forecast RMSE at all horizons, and yet, the density forecast from
the FAVAR12 is assigned a much larger weight in the optimally combined density forecast
at horizons longer than 1 quarter ahead. In addition, the DSGE is competitive with the
other models in terms of point forecast accuracy when forecasting output growth. Still, it is
assigned essentially zero weight in the combined density forecasts. This suggests that while
DSGE models may be useful for constructing point forecasts, they are not (yet) competitive
with statistically motivated models in terms of characterising forecast uncertainty.
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Appendix A. Visual and Statistical Assessment

Figures 5 and 6 present a visual assessment of the hypothesis that the pit-values corre-
sponding to the two- and four-quarter-ahead density forecasts are uniformly distributed.

Table 4 reports p-values for likelihood ratio tests of the null hypothesis that the density
forecasts are correctly specified at different forecast horizons. The test is a variant of the
tests suggested by Berkowitz (2001) and is described in Elder et al (2005) with two degrees
of freedom. The results are broadly in line with the visual assessment of the uniformity
hypothesis conducted in the main text, although it is difficult to make a direct comparison.
According to the tests, the univariate density forecasts of GDP growth and the cash rate
were, in general, poorly characterised, while the inflation density forecasts tended to fare
better. We were unable to reject the null hypothesis at the 95 per cent significance level that
the BVAR12, FAVAR12, and predictive-likelihood weighted combination density forecasts
for inflation were not misspecified at any forecast horizon. The test of correctly-specified
multivariate density forecasts proved difficult to pass, and except for the FAVAR12 model at
the one- and two-quarter-ahead forecast horizons, the null hypothesis that the multivariate
density forecasts coincide with the actual joint density was rejected at the 95 per cent
significance level. Again, there is little evidence to suggest that the ‘optimally’ combined
density forecasts are superior to the best-performing individual model or the equally weighted
forecasts, although the small sample makes it difficult to draw strong conclusions.
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Figure 5. Pit Distributions
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Notes: Rows in the figure refer to the three individual model density forecasts and the two combination
density forecasts. The first three columns refer to the pit-values corresponding to the univariate
two-quarter-ahead density forecasts for GDP growth, inflation and the cash rate. The final column
refers to the multivariate forecasts where the histogram is constructed using the ‘stacked’ sequence
of pit-values as described in the main text. The height of each bin (vertical axis) reflects the number
of observations that fell within different percentile bands (horizontal axis) over the evaluation period
(24 observations in total in the univariate cases and 24 observations for each of the three variables
in the multivariate case).
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Figure 6. Pit Distributions
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of pit-values as described in the main text. The height of each bin (vertical axis) reflects the number
of observations that fell within different percentile bands (horizontal axis) over the evaluation period
(20 observations in total in the univariate cases and 20 observations for each of the three variables
in the multivariate case).
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Table 4: Likelihood Ratio Tests
GDP growth Inflation Cash rate Multivariate

One-quarter-ahead horizon
BVAR2 0.00 0.09 0.00 0.00
FAVAR12 0.01 0.90 0.24 0.24
DSGE 0.00 0.00 0.01 0.00
PL 0.01 0.25 0.00 0.00
EQUAL 0.00 0.01 0.00 0.00
Two-quarter-ahead horizon
BVAR2 0.01 0.08 0.00 0.00
FAVAR12 0.02 0.78 0.18 0.30
DSGE 0.00 0.00 0.00 0.00
PL 0.01 0.23 0.00 0.00
EQUAL 0.00 0.01 0.00 0.00
Four-quarter-ahead horizon
BVAR2 0.01 0.11 0.00 0.00
FAVAR12 0.04 0.30 0.03 0.00
DSGE 0.00 0.00 0.00 0.00
PL 0.02 0.22 0.01 0.00
EQUAL 0.00 0.01 0.00 0.00
Eight-quarter-ahead horizon
BVAR2 0.01 0.47 0.00 0.00
FAVAR12 0.01 0.59 0.00 0.05
DSGE 0.00 0.00 0.00 0.00
PL 0.01 0.64 0.00 0.02
EQUAL 0.00 0.14 0.00 0.00

Note: Numbers in the table are the p-values for the likelihood ratio test of zero mean and unit variance of the inverse normal

cumulative distribution function transformed pit-values, with a maintained assumption of normality. Numbers in bold indicate

that the null hypothesis is rejected at the 5 per cent significance level.
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