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1 Introduction

In this session we will cover the estimation of a simple State Space Model with classical

methods. In order to accomplish this mission it will be necessary to write down the

Likelihood Function of the model with the aid of the Kalman Filter (see Lecture Notes).

Most of the material covered in this session can be found in chapter 13 Hamilton

(1994) (H), in chapter 3 of Kim and Nelson (1999) (KN) and lecture notes and slides from

prof. Kristo¤er Nimark (N)1. In order to provide a better understanding of each step, I

will indicate the number of equation of each reference as follows: (Book, equation).

2 The model

The model described below can be found in section 3.3. of Kim and Nelson (1999)

(Application 1). It is based on the work of Peter Clark: "The Cyclical Component of

U. S. Economic Activity" The Quarterly Journal of Economics, Vol. 102, No. 4 (Nov.,

1987), pp. 797-814.

�PhD student. Department of Economics, Universitat Pompeu Fabra, Ramon Trias Fargas 25�27,

08005 Barcelona, Spain (email: fernandojose.perez@upf.edu)
1http://www.kris-nimark.net/TS_UPF_2012.html
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2.1 Real GDP and unobserved components

Let yt be the log of the real GDP of the U.S. It is assumed that it can be decomposed in

two unobservable components, one that is nonstationary (nt) and one that is stationary

(xt). The complete model is as follows:

yt = nt + xt (2.1)

nt = gt�1 + nt�1 + �t (2.2)

gt = gt�1 + wt (2.3)

xt = �1xt�1 + �2xt�2 + et (2.4)

where �t; wt; et are i:i:d: Gaussian processes with variances �2�, �
2
w and �

2
e, respectively

and t = 1; : : : ; T . Besides, the terms nt and xt represent a stochastic trend and the

cyclical component, respectively. Finally, term gt is an auxiliary variable that represents

a permanent drift in the stochastic trend, therefore it follows a random walk. The purpose

of this exercise is to determine the paths of terms nt and xt by observing yt in each period

t. The latter can be implemented via the Kalman Filter given the parameter values

� = (�1; �2; ��; �w; �e)
0. However, since � is unknown it turns out that we must focus our

attention in how to estimate it in �rst place. Here we use classical methods to tackle this

issue.

2.2 State Space form and the Likelihood Function

2.2.1 State-space form

Following the cited references the model (2:1) � (2:2) � (2:3) � (2:4) has a state-space
form:

yt =
h
1 1 0 0

i
266664

nt

xt

xt�1

gt

377775 (2.5)

266664
nt

xt

xt�1

gt

377775 =
266664
1 0 0 1

0 �1 �2 0

0 1 0 0

0 0 0 1

377775
266664
nt�1

xt�1

xt�2

gt�1

377775+
266664
�t

et

0

wt

377775 (2.6)

If we go back to the lecture notes of the course, the state space system was

Zt = DXt + vt (2.7)
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Xt = AXt�1 + Cut (2.8)

where Zt � yt, Xt � [nt; xt; xt�1; gt]0 ;vt = 0 (constant) and therefore �vv = 0, ut = [ujt]
is a (4� 1) vector with ujt � N (0; 1) for j = 1; : : : ; 4 and

D �
h
1 1 0 0

i
; A �

266664
1 0 0 1

0 �1 �2 0

0 1 0 0

0 0 0 1

377775 (2.9)

C �

266664
�� 0 0 0

0 �e 0 0

0 0 0 0

0 0 0 �w

377775
Notice also that since the parameter vector � is constant over time, this is a version of

the time-invariant �lter described in section 4 of lecture notes. We will cover this issue in

the next subsection.

2.2.2 The Kalman Filter

In order to infer the value of vector Xt, we do the following: At the beginning of period

t we have the estimated value of previous period
�
Xt�1jt�1

�
with some covariance matrix�

Pt�1jt�1
�
and we have equation (2:8) as prior information, so that we can forecast a value

conditional on information at period t� 1:

Xtjt�1 = AXt�1jt�1 (2.10)

De�ne the variance as

Ptjt�1 � E
h�
Xt �Xtjt�1

� �
Xt �Xtjt�1

�0i
Ptjt�1 = E

h�
AXt�1 � AXt�1jt�1 � Cut

� �
AXt�1 � AXt�1jt�1 � Cut

�0i
Ptjt�1 = E

h�
A
�
Xt�1 �Xt�1jt�1

�
� Cut

� �
A
�
Xt�1 �Xt�1jt�1

�
� Cut

�0i
Since ut is i:i:d:, we have that:

Ptjt�1 = AE
h�
Xt�1 �Xt�1jt�1

� �
Xt�1 �Xt�1jt�1

�0i
A0 + CE [utu

0
t]C

0

which is equal to

Ptjt�1 = APt�1jt�1A
0 + CC 0 (2.11)
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New information related withXt arrives in period t in the form of Zt according to equation

(2:7). As a result, we update our estimate ofXt combining these two sources of information

as follows:

Xtjt = Xtjt�1 +Kt

�
Zt �DXtjt�1

�
(2.12)

where the term Zt �Xtjt�1 � eZt is the innovation and Kt is the Kalman gain. The latter

can be derived using the projection theorem, that isD
Xt �Kt

eZt; eZtE = 0
E
h�
Xt �Kt

eZt� eZ 0ti = 0
E
h
Xt
eZ 0ti�KtE

h eZt eZ 0ti = 0
and as a result we have (see lecture notes):

Kt = E
h
Xt
eZ 0ti �E h eZt eZ 0ti��1

where

E
h eZt eZ 0ti = E h�Zt �DXtjt�1

� �
Zt �DXtjt�1

�0i
E
h eZt eZ 0ti = E h�DXt + vt �DXtjt�1

� �
DXt + vt �DXtjt�1

�0i
E
h eZt eZ 0ti = E h�D �Xt �Xtjt�1

�
+ vt

� �
D
�
Xt �Xtjt�1

�
+ vt

�0i
E
h eZt eZ 0ti = DE h�Xt �Xtjt�1

� �
Xt �Xtjt�1

�0i
D0 + �vv (2.13)

so that:

Kt = Ptjt�1D
0 �DPtjt�1D0 + �vv

��1
(2.14)

Recall (2:12):

Xtjt = Xtjt�1 +Kt

�
Zt �DXtjt�1

�
Xtjt �Xt = Xtjt�1 �Xt +Kt

�
Zt �DXtjt�1

�
Xt �Xtjt�1 = Xt �Xtjt +Kt

�
Zt �DXtjt�1

�
Taking variances

Ptjt�1 = Ptjt +KtE
h eZt eZ 0tiK 0

t

and using (2:13):

Ptjt�1 = Ptjt +Kt

�
DPtjt�1D

0 + �vv
�
K 0
t

Ptjt = Ptjt�1 �Kt

�
DPtjt�1D

0 + �vv
�
K 0
t
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which combined with (2:14) results in

Ptjt = Ptjt�1 � Ptjt�1D0 �DPtjt�1D0 + �vv
��1

DP 0tjt�1 (2.15)

Now, we plug (2:15) in (2:11) expressed in t+ 1 :

Pt+1jt = A
�
Ptjt�1 � Ptjt�1D0 �DPtjt�1D0 + �vv

��1
DP 0tjt�1

�
A0 + CC 0 (2.16)

The time-invariant �lter says that Kt and Ptjt�1 are constant if parameters � are constant

and at the same time the initial covariance matrix of the �lter
�
P1j0

�
is the solution of

equation (2:16).

2.2.3 The Likelihood Function

According to Hamilton (1994), the forecasts Xtjt�1 and Ztjt�1 � DXtjt�1 that were derived

using linear projections are optimal among the set of linear forecasts. Furthermore, if the

innovations �t; wt; et and the initial state X0j0 are normally distributed, the forecasts

Xtjt�1 and Ztjt�1 are optimal among forecasts of any functional form. As a result, the

distribution of the forecast is

Ztjt�1 � N
�
DXtjt�1; DPtjt�1D

0 + �vv
�

or (H,13.4.1):

f
�
Ztjt�1

�
= (2�)�n=2 det

�
DPtjt�1D

0 + �vv
��1=2 � (2.17)

exp
� eZ 0t �DPtjt�1D0 + �vv

��1 eZt�
where eZt � Zt �DXtjt�1, n = dim (Xt) and t = 1; : : : ; T . The log-likelihood function is

therefore

l (�) =

TY
t=1

ln
�
f
�
Ztjt�1

��
(2.18)

which is equal to

l (�) = �Tn
2
ln [2�]� T

2
ln
�
det

�
DPtjt�1D

0 + �vv
��

(2.19)

+

TX
t=1

�
Zt �DXtjt�1

�0 �
DPtjt�1D

0 + �vv
��1 �

Zt �DXtjt�1
�

Ideally, the function l (�) is su¢ ciently well-behaved so that it is possible to �nd a ��

associated with a global maximum. This task is not necessarily easy to accomplish,

therefore in this notes we look for stable routines that produce accurate numerical results.

Fernando Pérez Forero 5



ECONOMETRIC METHODS II TA Session 4

We will cover this issue in the next section.

2.2.4 The Kalman Smoother

So far we have learnt how to estimate the unobservable components vector Xt conditional

on observing actual data Zt and previous data Zt�1, i.e. Xtjt and Xtjt�1. Here we show

that it is possible to infer the value of Xt for each period t given the entire dataset

ZT = fZ1; Z2; : : : ; ZTg, i.e. XtjT . For this procedure we need to focus our attention on

the transition equation (2:8). We start the smoothing with the last �ltered observation

XT jT , i.e. we don�t need to update it since it is already conditioned on T . Now consider

the updating equation

XtjT = Xtjt + Jt
�
Xt+1 �Xt+1jt

�
(2.20)

which means that the smoothed value XtjT is a function of the �ltered (real time) value

Xtjt and the innovation on X in the next period eXt+1 �
�
Xt+1 �Xt+1jt

�
. We assume that

these two terms are orthogonal, therefore we can apply the projection theorem againD
Xt � Jt eXt+1; eXt+1

E
= 0

E
h�
Xt � Jt eXt+1

� eX 0
t+1

i
= 0

E
h
Xt
eX 0
t+1

i
� JtE

h eXt+1
eX 0
t+1

i
= 0

and as a result we have (see lecture notes):

Jt = E
h
Xt
eX 0
t+1

i �
E
h eXt+1

eX 0
t+1

i��1
where

E
h eXt+1

eX 0
t+1

i
= E

h�
Xt+1 �Xt+1jt

� �
Xt+1 �Xt+1jt

�0i
E
h eXt+1

eX 0
t+1

i
= Pt+1jt (2.21)

On the other hand

E
h
Xt
eX 0
t+1

i
= E

h
Xt

�
Xt+1 �Xt+1jt

�0i
E
h
Xt
eX 0
t+1

i
= E

h
Xt

�
AXt + Cut+1 � AXtjt

�0i
E
h
Xt
eX 0
t+1

i
= E

h
Xt

�
A
�
Xt �Xtjt

�
+ Cut+1

�0i
E
h
Xt
eX 0
t+1

i
= E

h
Xt

�
Xt �Xtjt

�0
A0
i
+ E

�
Xtu

0
t+1

�| {z }C 0
=0

E
h
Xt
eX 0
t+1

i
= E

h�
Xt �Xtjt +Xtjt

� �
Xt �Xtjt

�0
A0
i
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E
h
Xt
eX 0
t+1

i
= E

h�
Xt �Xtjt

� �
Xt �Xtjt

�0i| {z }
=Ptjt

A0 + E
h
Xtjt

�
Xt �Xtjt

�0i| {z }A0
=0

E
h
Xt
eX 0
t+1

i
= PtjtA

0 (2.22)

As a result from (2:21) and (2:22) we get

Jt = PtjtA
0P�1t+1jt (2.23)

That is, the Kalman Smoother can be derived using the output of the Kalman Filter.

3 Estimating the model in Matlab

3.1 Data description

In order to estimate vector � we use quarterly data of real GDP of the U.S. for the period

1952:I-1995:III, i.e. the same data of Kim and Nelson (1999)2. Now, let�s take a look to

the logarithm of this data in Figure 3.1

Figure 3.1: Natural logarithm of Real GDP (1952:I-1995:III

3.2 The Log-Likelihood Function

Next step is to write down a program for the log-likelihood function. The structure of

the program is the following:

2This dataset can be downloaded from http://www.econ.washington.edu/user/cnelson/markov/prgmlist.htm
together with GAUSS codes from the same reference. Since we will work on Matlab, I only use the

dataset but not the GAUSS programs. For symmetry purposes, I initialize the �lter using the same values
as these authors, i.e. X0j0 = 0 and P0j0 = 100� I.
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1. Assign values for each entry of vector � = (�1; �2; ��; �w; �e)
0.

2. Given �, set matrices A, C, D of the state-space form and �vv as in (2:5) � (2:6)
and (2:9).

3. Set the initial values X0j0 = 0n�1 and P1j0 as the solution of equation (2:11).

4. For each t = 1; : : : ; T compute Xtjt�1 and Ptjt�1 using (2:10) and (2:11) and compute

also Xtjt and Ptjt using (2:12) and (2:15).

5. At each step t, given Xtjt�1, Ptjt�1 and state-space matrices from step 2, evaluate

equation (2:17).

6. Compute the �nal result using (2:18).

Besides these 6 steps, some details must be taken into account when constructing a

likelihood function:

1. The function must have only one argument, i.e. �. If your function has additional

inputs, use varargin instead, otherwise the optimization routine will not work.

Another possibility is to use global variables.

2. Most of optimization routines are minimizers, therefore you should make sure that

your function is actually �1 times the theoretical one, in this case given by (2:19).

3. It is likely that for some regions of � the value of l (�) does not exist, at least in

the real space. You should control for that and assign an arbitrary very low value

for these cases. The latter will help the optimization routine to not explore these

regions more than one time.

4. Computation of some matrices such as the Kalman Gain (K) in (2:14) often demands

inverting some other matrices. This might sound trivial but sometimes this is could

be a nightmare if the inverted matrix is near-singular. The command inv is the most

commonly used but it could be very slow and very often unstable. Alternatively you

can use left or right division (mldivide(A,B)() AnB or mrdivide(B,A)() B/A).

However, sometimes this is not enough and for some parameter values the inverted

matrix of the Kalman Gain formula will deliver unreasonable values. Another pos-

sibility is to use the command pinv, which is the Moore-Penrose pseudoinverse of a

matrix.

The matlab code for this function can be found in Appendix A.1.

Fernando Pérez Forero 8
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3.3 Numerical Maximization

Once we have the m-�le for the function (logl_rgdpxn.m), the next step is to create a

loop for maximization. Here we show two di¤erent optimization routines with the aim to

show the sensitivity of results.

3.3.1 csminwel.m

The �rst optimization routine (csminwel.m) belongs to professor Christopher Sims�s op-

timization package3. These routines are popular in the �eld because of their stability

across many problems. The description of this program from its website is: "csminwel:

minimization. Uses a quasi-Newton method with BFGS update of the estimated inverse

hessian. It is robust against certain pathologies common on likelihood functions. It at-

tempts to be robust against "cli¤s", i.e. hyperplane discontinuities, though it is not really

clear whether what it does in such cases succeeds reliably.".

We will use this routine starting from several values in order to �nd a global maximum.

The structure of the loop is as follows:

1. Draw a large set of initial values �0 �
�
�10; �

2
0; : : : ; �

j
0; : : : ; �

N
0

	
from an arbitrary

distribution.

2. For each j = 1; : : : ; N do the following: Given �j0, execute the routine csminwel.m

using logl_rgdpxn.m as a handling function until it �nds an optimum ��j . Store �
�
j

and l
�
��j
�
in di¤erent vectors.

3. Let L� =
�
l (��1) ; l (�

�
2) ; : : : ; l

�
��j
�
; : : : ; l (��N)

	
. Find �ML = argmax

��j
L�.

4. Compute the inverse of the Information Matrix associated with l
�
�ML

�
and take

the square root of the main diagonal as the standard deviations.

A crucial point in this algorithm is to set the initial size of the step. This can be

modi�ed in the �le csminit.m. The matlab code for this loop can be found in Appendix

A.2.

3.3.2 Simulated Annealing

The algorithm uses elements of grid search with random movements. See details Go¤e

et al. (1994) and in lecture notes. here we describe the following loop:

1. Set the upper and lower bounds for the parameter space, i.e. �Min and �Max and

select an initial point �0.

3The set of programs related with this optimization routine can be donwloaded from
http://sims.princeton.edu/yftp/optimize/m�les/
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2. Set initial temperature, reduction parameters, etc.

3. Start the loop according to lecture notes (simannb2.m) using logl_rgdpxn.m as a

handling function until it �nds an optimum �ML4.

The matlab code for this loop can be found in Appendix A.3.

3.4 Kalman Filtering and Smoothing

Given a set of optimal parameter values �ML, it is now worth to explore the paths of

unobserved components. We need to vectors: i) real time estimates Xtjt and ii) smoothed

estimates XtjT . In otder to get these results we construct the following loop:

1. State-Space form: Given �ML, set matrices A, C, D and �vv as in (2:5) � (2:6)
and (2:9).

2. Initialization: Set the initial valuesX0j0 = 0n�1 and P1j0 as the solution of equation

(2:11).

3. Filtering: For each t = 1; : : : ; T compute Xtjt�1 using (2:10) and Xtjt using (2:12).

For this step, store also Ptjt�1 and Ptjt.

4. Smoothing: Given the sequence
�
Xtjt�1; Xtjt; Ptjt�1; Ptjt

	T
t=1
, for each t = T �

1; : : : ; 1 compute XtjT using (2:20).

The matlab code for this loop can be found in Appendix A.4

4 Results

The maximum likelihood estimates of the model are reported in Table 4.1. Results are

slightly di¤erent across methods, therefore we pick the one that has the maximum likeli-

hood (Simulated Annealing).

4The function simannb2.m is a matlab translation of Go¤e et al. (1994)�s original Fortran code. It
has been made by Knoek van Soest <a_j_van_soest@fbw.vu.nl> and there is also a bug �x in 2000
by Anne Su <sua@bme.ri.ccf.org>. Furthermore, I�ve modi�ed the code for using varargin instead of
global.
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Point estimates
� Simulated Annealing csminwel
�1 1:2825 1:2861
�2 �0:2925 �0:2961
�� 0:0001 0:0005
�w 0:0087 0:0087
�e 0:0001 0:0001

l
�
�ML

�
557:2278 557:2139

Table 4.1: Maximum Likelihood estimates for 1952-1995

Furthermore, given the optimal parameter values, we compute the trajectories of un-

observed components nt and xt using the Kalman Filter and given the parameter values

�ML. We �rst plot the trend component against the true data in Figure 4.3 and then the

stationary cyclical component in Figure 4.2

Figure 4.1: Smoothed trend component and the data

Fernando Pérez Forero 11
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Figure 4.2: Smoothed cyclical component

However, it is worth to explore the paths of �ltered (predicted and updated compon-

ents) against the smoothed values. Here we can see that the di¤erence is signi�cant, but

course this di¤erence is speci�c to this experiment.

Figure 4.3: All cyclical components: predicted, �ltered and smoothed

Fernando Pérez Forero 12
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A Matlab codes

A.1 Log-Likelihood Function

function L=logl_rgdpxn(theta,varargin)

phi1=theta(1);

phi2=theta(2);

sigma_v=exp(theta(3));

sigma_e=exp(theta(4));

sigma_w=exp(theta(5));

% Stationarity restrictions

temp=[(phi1+phi2<0.99),(-phi1+phi2<0.99),(abs(phi2)<0.99)...

,sigma_v>=1e-4,sigma_e>=1e-4,sigma_w>=1e-4];

if sum(temp)==length(temp)

Z=varargin{1};

T=size(Z,1);

% 1. State-Space form

A=[1 0 0 1;

0 phi1 phi2 0;

0 1 0 0;

0 0 0 1];

C=zeros(4,4);

C(1,1)=sigma_v;

C(2,2)=sigma_e;

C(4,4)=sigma_w;

D=[ones(1,2),zeros(1,2)];

Sigma_vv=0;

% 2. Initialization

n=size(A,1);

Fernando Pérez Forero 13
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X=zeros(n,T);

P_tt=100*eye(n);

% Likelihood evaluation

L=0;

for t=1:T

% Prediction

if t==1

X_t1=zeros(n,1);

else

X_t1=A*X(:,t-1);

end

P_tt1=A*P_tt*A�+C*C�;

% Updating

Omega=D*P_tt1*D�+Sigma_vv;

Omegainv=eye(size(Z,2))/Omega;

Kt=P_tt1*D�/Omega;

Ztilde=Z(t,1)-D*X_t1;

X(:,t)=X_t1+Kt*Ztilde;

P_tt=P_tt1-Kt*Omega*Kt�;

% Log-Likelihood

L=L-0.5*(log(2*pi)+log(det(Omega)))-0.5*Ztilde�*Omegainv*Ztilde;

end

if isreal(L)==1

L=-L; % for minimization

else

L=8e30;

end

else

L=8e30; % nonstationary

end
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end

A.2 Numerical Maximization via csminwel.m

%% 2. Maximum Likelihood Estimation (csminwel.m)

param=5;

warning off all

Nbar=100;

LB_Theta=[-2,-1,log(1e-4),log(1e-4),log(1e-4)];

UB_Theta=[2, 1, log(std_y), log(std_y), log(std_y)];

theta_0T=zeros(Nbar,param);

theta_finT=zeros(Nbar,param);

LoglT=zeros(Nbar,1);

tic

for k=1:Nbar

% Settings for csminwel usage

theta0=unifrnd(LB_Theta,UB_Theta);

tol_crit=1e-5;

max_iter=1e100;

H0=eye(param);

[LogL,theta_fin,grad_theta,h_grad,itct,fcount,retcodeh] = csminwel(...

@logl_rgdpxn,theta0,H0,[],tol_crit,max_iter,Z);

theta_0T(k,:)=theta0;

theta_finT(k,:)=theta_fin;

LoglT(k,1)=-LogL;

end

toc

[Logl_fin,ind_max]=max(real((LoglT)));

theta_fin=theta_finT(ind_max,:);

theta0=theta_0T(ind_max,:);

savefile=�rgdpxn_csminwel.mat�;

save(savefile,�theta_fin�,�Logl_fin�,�h_grad�)
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A.3 Numerical Maximization via Simulated Annealing

%% 3. Simulated annealing

param=5;

warning off all

LB_Theta=[-2,-1,log(1e-4),log(1e-4),log(1e-4)];

UB_Theta=[2, 1, log(std_y), log(std_y), log(std_y)];

theta_draw=LB_Theta+0.5*(UB_Theta-LB_Theta);

sa_t= 5; %starting temperature

sa_rt=.85;

sa_nt=5;

sa_ns=20;

warning off all;

[theta_fin]=simannb2(�logl_rgdpxn�, theta_draw, LB_Theta�, UB_Theta�, sa_t,

sa_rt, sa_nt, sa_ns, 1,Z);

% theta, starting values

% LB, lower bound on optimization parameters

% UB, upper bound on optimization parameters

% sa_t, initial temperature, try starting with 5

% sa_rt, temperature reduction factor, conservative choice is .85

% sa_nt, number of times through ns loop before temperature reduction (recommended

value: 5)

% sa_ns, number of times through function before stepsize adjustment

% (recommended value: 20)

Logl_fin=-logl_rgdpxn(theta_fin,Z);

savefile=�rgdpxn_SA.mat�;

save(savefile, �theta_fin�)

A.4 The Kalman Filtering and Smoothing

%% 4. Kalman Filtering and Smoothing

load rgdpxn_SA.mat

%load rgdpxn_csminwel.mat

phi1=theta_fin(1);

phi2=theta_fin(2);

sigma_v=exp(theta_fin(3));

sigma_e=exp(theta_fin(4));
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sigma_w=exp(theta_fin(5));

T=size(Z,1);

% 4.1. State-Space form

A=[1 0 0 1;

0 phi1 phi2 0;

0 1 0 0;

0 0 0 1];

C=zeros(4,4);

C(1,1)=sigma_v;

C(2,2)=sigma_e;

C(4,4)=sigma_w;

D=[ones(1,2),zeros(1,2)];

Sigma_vv=0;

% 4.2. Initialization

n=size(A,1);

Xtt1=zeros(n,T);

Xtt=zeros(n,T);

XtT=zeros(n,T);

P_tt1=zeros(n,n,T);

P_tt=zeros(n,n,T);

P_tT=zeros(n,n,T);

X_00=zeros(n,1);

P_00=100*eye(n);

% 4.3. Kalman Filter

for t=1:T

% Prediction

if t==1

Xtt1(:,t)=A*X_00;

P_tt1(:,:,t)=A*P_00*A�+C*C�;

else

Xtt1(:,t)=A*Xtt(:,t-1);
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P_tt1(:,:,t)=A*P_tt(:,:,t-1)*A�+C*C�;

end

% Updating

Omega=D*P_tt1(:,:,t)*D�+Sigma_vv;

Kt=P_tt1(:,:,t)*D�/Omega;

Ztilde=Z(t,1)-D*Xtt1(:,t);

Xtt(:,t)=Xtt1(:,t)+Kt*Ztilde;

P_tt(:,:,t)=P_tt1(:,:,t)-Kt*Omega*Kt�;

end

% 4.4. Kalman Smoother

XtT(:,T)=Xtt(:,T);

P_tT(:,:,T)=P_tt(:,:,T);

for t=T-1:-1:1

Jt=P_tt(:,:,t)*A�/P_tt1(:,:,t+1);

XtT(:,t)=Xtt(:,t)+Jt*(XtT(:,t+1)-Xtt1(:,t+1));

P_tT(:,:,t)=P_tt(:,:,t)+Jt*(P_tT(:,:,t+1)-P_tt1(:,:,t+1))*Jt�;

end
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