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Abstract. This note describes how the Kalman filter can be modified to allow for the vector
of observables to be a function of lagged variables without increasing the dimension of the state
vector in the filter. The modified filter, which nests the standard filter, can be used to compute
(i) the steady state Kalman filter (ii) the log likelihood of a parameterized state space model
conditional on a history of observables (iii) a smoothed estimate of latent state variables and
(iv) a draw from the distribution of latent states conditional on a history of observables.
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This note describes how the Kalman filter can be modified to allow for the vector of observable
variables in the measurement equation to be a function of lagged variables. The standard
approach, which is to augment the state vector of the filter to include also lagged variables,
works well in most applications. However, it also doubles the dimension of the state vector
which is undesirable in some applications. The modified filter presented here avoids increasing
the dimension of the state by exploiting that the innovation representation can be modified so
as to make it unnecessary to augment the state vector with lagged variables.

The derivation of the modified filter, which nests the standard filter as a special case, is
presented in the next section. This is followed by a brief description of how to use the modified
filter together with standard algorithms for the Kalman Smoother and Kalman Simulation
Smoother. The last section concludes and references existing work where the modified filter
has proved to be useful.

1. A filtering problem

Consider a standard state space system augmented to allow the measurement equation to
depend on lagged states

Xt = AXt−1 + Cut : ut ∼ N(0, I) (1.1)

Zt = D1Xt +D2Xt−1 +Rut (1.2)

where Xt is the n× 1 dimensional state vector, A is an n× n matrix, C is and n×m matrix.
Zt is a p× 1 vector of observable variables and D1 and D2 are both p× n matrices and R is a
p×m matrix.
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Define the notation

Xt|t−s ≡ E
[
Xt | Zt−s, X0|0

]
(1.3)

Pt|t−s ≡ E
[(
Xt −Xt|t−s

) (
Xt −Xt|t−s

)′]
(1.4)

where X0|0 is the mean of the exogenously given prior distribution of X0 given by

X0 ∼ N
(
X0|0, P0|0

)
(1.5)

We want to find the Kalman gain Kt in the recursive updating

Xt|t = AXt−1|t−1 +Kt

[
Zt − (D1A+D2)Xt−1|t−1

]
(1.6)

so that Xt|t is the conditional minimum variance estimate of Xt.

1.1. The standard approach. The state space system (1.1) - (1.2) is standard apart from
the fact that the vector of observables Zt depends on both the current and the lagged state. A
straightforward and common way to get around this problem is to redefine the state so as to
include also lagged Xt to get

X t = AX t−1 + Cut (1.7)

Zt = DX t +Rut (1.8)

where

X t =
[
X ′t X ′t−1

]′
, A =

[
A 0
I 0

]
C =

[
C
0

]
, D =

[
D1 D2

]
The standard filter can then be applied to the augmented system (1.7) - (1.8). In most appli-
cation, this does not cause any complications. However, in some cases it is desirable to have
a state of low dimensionality and redefining the state as above doubles the dimension of the
state, i.e. X t is a 2n× 1 vector. Below, a new filter is derived that solves the filtering problem
while maintaining an n-dimensional state vector.

2. A modified filter

In this section, the modified filter is derived. The system is linear with Gaussian disturbances
and the minimum variance estimate of the latent state then coincides with the orthogonal pro-
jection onto the set of conditioning variables (or signals). The filter is derived using the Gram-
Schmidt approach of recursively orthogonalizing the time series of observable variables.1 This
approach exploits that the projection of a random variable onto a set of mutually orthogonal
signals is equivalent to adding up the projections of the variable onto the individual signals.
That is,

E(x | z, y) = E(x | z) + E(x | y) (2.1)

if
E(zy′) = 0 (2.2)

1A derivation of the standard filter along similar lines can be found in Anderson and Moore (1979).
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and x, y and z are zero-mean Gaussian random variables.
It is the property (2.1) - (2.2) that will allow us to write down a recursive update equation

for Xt|t. The first step is to find the projection of Xt onto the component of the period t signals
that is orthogonal to information known in period t − 1. This projection can then be added
to the prior estimate Xt|t−1, i.e. the projection of Xt onto period t− 1 information, to form a

posterior estimate Xt|t. To this end, define the innovation Z̃t as the component of Zt that is
orthogonal to period t− 1 information

Z̃t ≡ Zt − Zt|t−1 (2.3)

so that the posterior estimate Xt|t will be given by

Xt|t = Xt|t−1 + E
(
Xt | Z̃t

)
. (2.4)

To solve the filtering problem we thus need to find an expression for E
(
Xt | Z̃t

)
. We will start

by solving this problem for period 1. The resulting expressions are then straightforward to
generalize to period t.

2.1. Projecting the state onto the innovation in the observable vector. In the initial
period there are two pieces of information available: the exogenously given prior distribution
(1.5) and the initial signal Z1. By (2.4) the prior and the signal can be combined as

X1|1 = X1|0 +K1Z̃1 (2.5)

to form the posterior mean X1|1 if K1Z̃1 = E
(
X1 | Z̃1

)
. From the projection theorem (e.g.

Brockwell and Davis 2006), the appropriate K1 is given by the standard projection formula

K1 = E
(
X1Z̃

′
1

) [
E
(
Z̃1Z̃

′
1

)]−1
. (2.6)

To compute the Kalman gain K1 we thus need to derive operational expressions for E
(
X1Z̃

′
1

)
and E

(
Z̃1Z̃

′
1

)
.

2.2. The covariance of the state and the innovation vector. To find the covariance
E
(
X1Z̃

′
1

)
, start by using the identities implied by (1.1) - (1.2) to rewrite the innovation as

Z̃t = (D1A+D2)
(
X0 −X0|0

)
+ (D1C +R)u1. (2.7)

It is helpful to define the posterior state estimation error X̃t as

X̃t ≡ Xt −Xt|t (2.8)

and use this together with (2.7) to express the covariance of the state and the innovation as

E
(
X1Z̃

′
1

)
= E

[(
A
(
X̃0 +X0|0

)
+ Cu1

)
(2.9)

×
(

(D1A+D2) X̃0 +D1Cu1 +Ru1

)′]
.
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Since E
(
X0|0X̃

′
0

)
= 0 and P0|0 ≡ E

(
X̃0X̃

′
0

)
equation (2.9) can be simplified to

E
(
X1Z̃

′
1

)
= AP0|0 (D1A+D2)

′ + CC ′D′1 + CR′. (2.10)

We thus have the first term in the Kalman gain (2.6).

2.3. The covariance of the innovation vector. To find the covariance of the innovation
vector Z̃1, simply use that (2.7) implies that

E
(
Z̃1Z̃

′
1

)
= (D1A+D2)P0|0 (D1A+D2)

′ (2.11)

+ (D1C +R) (D1C +R)′

yielding the second term in the Kalman gain (2.6).

2.4. The Kalman gain. Plugging in (2.10) and (2.11) into the (2.12) then yields the Kalman
gain for the first period

K1 =
(
AP0|0 (D1A+D2)

′ + CC ′D′1 + CR′
)

(2.12)

×
[
(D1A+D2)P0|0 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]−1

2.5. The posterior covariance. To find the general expressions for the Kalman filter we can
simply apply the same steps (2.7) - (2.12) with each variable and matrix replaced by their
period t counterparts. However, the covariance P0|0 of the initial period estimate X0 was given
exogenously. To find a general expression for the Kalman gain we thus first need to find an
expression for the posterior covariance matrix P1|1.

First, take the expression for the period 1 estimate of X1

X1|1 = X1|0 +K1Z̃1 (2.13)

and add X1 to each side. Use the definition (2.8) and rearrange to get

X̃1 +K1Z̃1 = X1 −X1|0. (2.14)

By optimality of the filter, the posterior error X̃1 is orthogonal to the innovation Z̃1. The

variance of the left hand side of (2.14) is thus simply the sum of the covariance of X̃1 and the

covariance of K1Z̃1. Using (1.4) and (2.11) we thus have

P1|1 +K1

[
(D1A+D2)P0|0 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]
K ′1 = P1|0. (2.15)

Rearranging gives an operational expression for the posterior covariance

P1|1 = P1|0 −K1

[
(D1A+D2)P0|0 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]
K ′1 (2.16)

as desired.
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2.6. The Kalman recursions. The general expressions for the Kalman filter are then given
by

Kt =
[
APt−1|t−1 (D1A+D2)

′ + CC ′D′1 + CR′
]

(2.17)

×
[
(D1A+D2)Pt−1|t−1 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]−1

Pt|t = Pt|t−1 (2.18)

−Kt

[
(D1A+D2)Pt−1|t−1 (D1A+D2)

′ + (D1C +R) (D1C +R)′
]
K ′t

Pt+1|t = APt|tA
′ + CC ′ (2.19)

where the last line used that

Xt+1|t −Xt = A
(
Xt|t −Xt

)
+ Cut. (2.20)

The steady state Kalman gain K∞ can as usual be found by iterating on (2.17) - (2.19) until
convergence.

3. Computing the log likelihood

As with the standard filter, the fact that the innovations Z̃t are i.i.d. Gaussian vectors can
be used to recursively evaluate the log likelihood L of the data conditional on a parameterized
state space system with Gaussian disturbances. It is given by

L (Z | A,C,D1, D2, R) = −1

2

T∑
t=1

(
p lnπ + ln |Ωt|+ Z̃ ′tΩ

−1
t Z̃t

)
(3.1)

where Ωt is the covariance of the innovation vector given by the period t equivalent of (2.11).

4. The Kalman smoother for the modified system

The smoothed estimate of Xt is defined as the linear minimum variance estimate of Xt

conditional on the complete history of observables, i.e.

Xt|T ≡ E
(
Xt | ZT , X0|0

)
(4.1)

As shown in Hamilton (1994), the smoothed estimate of Xt can be computed by using as input
the time series of Xt|t without the need to again condition on the observables. This makes it
possible to derive the smoother without an explicit role for Zt, once we have the recursions
(2.17)-(2.19) and have computed the time series for Xt|t. The smoothed estimates of Xt are
then given by

Xt|T = Xt|t + Jt−1
(
Xt+1|T −Xt+1|t

)
(4.2)

where

Jt = Pt|tA
′P−1t+1|t (4.3)

The covariances of the smoothed state estimation errors can be computed as

Pt|T = Pt|t + Jt
(
Pt+1|T − Pt+1|t

)
J ′t.

A smoothed estimate of Xt can then be found using the following algorithm..
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4.1. A Kalman smoother algorithm.

(1) Compute the sequence Xt|t : t = 1, 2, .., T using the forward recursions (1.6) and (2.17)
- (2.19). Store Xt|t, Pt|t and Pt+1|t.

(2) Compute the smoothed estimates Xt|T : t = T − 1, T − 2, ..., 1 using the backward
recursions (4.2) - (4.3).

5. The Kalman simulation smoother for the modified system

As described in Durbin and Koopman (2002), a draw from p(XT |ZT ) can be generated by
the following algorithm

5.1. A Kalman simulation smoother algorithm.

(1) Construct a draw Z+T from p(ZT ) using the system (1.1) (1.2) and save the draw of
the state X+T .

(2) Construct Z∗T = ZT − Z+T .

(3) X̃T = X̂∗T +X+T is then a draw from p(XT |ZT ) where X̂∗T = E
(
X|TZ∗T

)
(i.e. X̂∗T

is the output of running Z∗T through the smoothing algorithm above).

This algorithm involves drawing only from the i.i.d. vectors of ut rather than from conditional
distributions of the state xt (with the exception of generating the draw from the distribution of
the initial state p(X0)). The latter is often singular in interesting economic applications since
the state dimension is often larger than the stochastic dimension in models with endogenous
state variables. A singular covariance matrix requires additional computational steps which are
avoided in Durbin and Koopman’s algorithm.

6. Conclusions

Above it was demonstrated how the Kalman filter can be modified to allow for lagged ob-
servables without increasing the dimension of the state vector in the filter. While the standard
approach of augmenting the state vector with lagged variables works well in many applications,
it also introduces additional computational burdens that in some applications have significant
costs. Examples of when the modified filter has been useful include Melosi (2014) and Nimark
(2012) who study models with heterogeneously informed agents. The former paper estimates a
structural business cycle model and the latter a model of the term structure of interest rates.
These models naturally have high-dimensional state vectors and the standard approach of aug-
menting the state vector with lagged values is costly, both in terms of tractability and the
computational burden of solving these models.

Researchers facing similar computational challenges can download Matlab code for the mod-
ified Kalman filter, smoother and simulation smoother from the author’s web page www.kris-
nimark.net .
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