
TOPICS IN MACROECONOMICS: MODELLING INFORMATION,
LEARNING AND EXPECTATIONS

KRISTOFFER P. NIMARK

Bounded rationality and adaptive learning

In these notes we will discuss an approach to bounded rationality known as Recursive

Least Squares (RLS) learning where we relax the assumption that agents know the structure

of the economy and “put the agents and the econometrician on the same footing” (Sargent

1993). Evans and Honkapohja (2001) is a good (and exhaustive) textbook treatment of the

topic. The basic idea is well capture by the previous quote: We build models populated

with econometricians who run regressions to form expectations. It’s original motivation

was to find out whether rational expectations equilibria (REE) are learnable in the sense

that agents equipped with a suitable functional form for their regression model will discover

the true parameters of the model with access to a long enough history of data. This is

more involved question than running recursive OLS in other settings, since the system is

self-referential. That is, agents’ actions depend on their regression estimates, which in turn

depend on their actions since these influence observables through their effect on expectations.

It turns out that in many setting, yes, agents will discover the REE by running recursive

least squares learning. Roughly speaking, what is required for beliefs to converge to the REE

is that agents use a model with a functional form that nest the data generating process in

REE and that their initial beliefs are not too far away from those of the REE.

Examples of other questions that has been tackled within this framework are for instance

how optimal monetary policy should be conducted in an environment where the private

sector is learning, and more recently, learning has also been proposed as a mechanism for
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generating dynamics that match aggregate data (e.g. Milani 2006 and Eusepi and Preston

2008)

0.1. How is learning different from imperfect information. In this class, we have

extensively studied models that can be put in the form

Xt = AXt−1 + Cut (0.1)

Zt = DXt + vt

and to solve these models we assumed that agents knew the structure of the economy, i.e.

agents knew A,C,D and the Σvv but could not observe the state Xt directly. In the learning

literature, these assumptions are flipped: Agents can observe the state Xt (or what they

perceive to be the state) but do not completely know the structure of the economy, i.e. they

do not know the matrices A,C,D and the Σvv. Instead, they will form expectations based

on running recursive regressions and take actions as if these expectations were optimal.

0.2. A Brief History of Expectations in Macroeconomics. In the 1960’s many macro

models contained expectations terms and their importance for wages, inflation and output

was already well understood.1 Expectations were often modeled as adaptive, in the sense

that expectations of future values of a variable, depended on lagged values of the same vari-

able. This approach had some advantages: It seemed to fit the data rather well, and with

appropriate restrictions on the lag coefficients, expectations converged to steady state levels

in models where such a steady state existed. This was in spite of the fact that the seed to

the rational expectations revolution had already been sowed by John Muth (1961). In the

paper that coined the term “rational expectations”, Muth asked the following question: for a

given adaptive expectations scheme, what stochastic system would make these expectations

optimal? Instead of taking an expectations scheme and finding a model that would make

1See for instance Samuelson and Solow (1960).
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it rational, Sargent (1971) and Lucas (1972) reversed the process and let the optimal ex-

pectations be determined by the model. Expectations then disappear as free variables from

macroeconomic models.

The rational expectations revolution has had a great impact on macroeconomics, and

the reasons are many: It is a beautiful application of Occam’s razor in that it reduces the

number of free parameters (and variables) while increasing the internal consistency of models

by extending rationality also to how expectations are formed and how available information

is used. This economy of parameters comes from the fact that in rational expectations

equilibria, the true model coincide with the model used by the agents inside the model to

form expectations. This is an appealing feature of rational expectations if one believes that

we as economists should not build models where we know more about the economy than

the agents inside the model. Particularly, and as forcefully argued by Lucas (1976), we

should not use such models for policy advice that presumes that policy makers will be able

to systematically fool the public.

The “communism of models” also gave a lot of power to rational expectations economet-

rics, since it placed stringent cross equation restriction on the data. In addition, because

rational expectations econometrics also economized on free parameters relative to previous

approaches, it allowed for sharpened inference.2

A lot of the power of rational expectations thus comes from that it equates the expec-

tations of agents inside the model to the mathematical expectations implied by the model

(and perhaps subject to informational constraints). This seemed to attribute a great deal of

knowledge to the agents inside the model since it is assumed that not only do agents know

the structure of the economy, but they also know the parameters. A natural question to

ask is ”How do agents inside the model come about this knowledge?” This question was the

initial motivation for the learning literature. Perhaps we should build models where agents

2This sharp inference often led to rejections of the rational expectations models of the first generation. In
an interview Sargent is quoting Lucas as saying that “These likelihood ratios are rejecting too many good
models!”, see Evans and Honkapohja (2005).
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know as much as we do as economists, but not more than we do as econometricians? If given

a functional form, can agents inside the model discover the rational expectations equilibrium

if given a sufficiently long history of data? That is, if we populate our models with econo-

metricians, can they discover and converge to the rational expectations equilibrium? This

is a more involved question than what may appear at first glance. As economists, or econo-

metricians, we use asymptotic theory to motivate consistency of estimators etc. However,

these statistical techniques are not directly transferable to self-referential learning models

where expectations determine outcomes which in turn affect the learning process which in

turn affect expectations and so on. In an early contribution, Bray (1983) asks exactly this

question in an asset pricing model similar to that of the well-known model of Grossman and

Stiglitz (1983). Bray’s contribution will be discussed in more detail below. We first give an

overview of some important concepts and how learning has most commonly implemented in

the literature.3 Readers who are already familiar with terms such as anticipated utility, re-

cursive least squares learning, constant gain learning and self-confirming equilibria can skip

this overview.

0.3. Anticipated Utility. Most economic models that deal with uncertainty assume that

agents maximize expected utility (i.e. von Neumann-Morgenstern utility). In dynamic mod-

els, expected utility is often expressed as the discounted present value of future period-by-

period utility, where the expected discounted value depend on (among other things) the

transition laws of the economy and the stochastic processes that shocks the model. In the

rational expectations literature, expectations of future utility are conditional on the true

model and the information set of the agent. In that framework, an action is optimal if it

maximizes the expected utility of the agent according to this measure.

In the macro learning literature it is common to instead of expected utility use what

has become known as anticipated utility (see Kreps 1998). It is in many ways similar to

3A lot of the material of the next section can be found in the text book by Evans and Honkapohja (2001).
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expected utility, except for two properties: (i) Agents do not know the true model and, (ii)

even though agents know that they are learning about the parameters, they do not take

into account that they will continue to learn in the future when the choose actions today.

An optimal action according to an anticipated utility maximizer is the action that would

maximize expected utility if the current beliefs of the agent were the true model (and time

invariant). Cogley and Sargent (2008) demonstrate in a life cycle model of consumption and

saving that anticipated utility can approximate expected utility very closely. Kreps (1998)

argues that it is a reasonable behavior in settings where it is difficult to figure out the true

structure of the world and thus would constitute a rational action.

0.4. Actual and Perceived Laws of Motion. In a rational expectations model, there is

only one model, that is, the “true” model. In a model of learning, the true model is referred

to as the Actual Law of Motion (ALM). This name distinguishes it from the Perceived Law of

Motion (PLM), which is the model used by the agents inside the model to form expectations.

A simple example can make the distinction clear. Consider the price setting model

pt = µ+ αÊt−1pt + εt (0.2)

εt ∼ N
(
0, σ2

)
(0.3)

where pt is the price level, µ and α are parameters and Êt−1 is the operator denoting agents’

(not necessarily rational) expectations at time t− 1. In the rational expectations equilibria

(REE), the price is a constant plus white noise error

pt =
µ

1− α
+ εt (REE) (0.4)

In a model of learning, instead of solving for the fixed point (1.4) to find the expectation

of (1.2), it is common to conjecture that agents’ perceived law of motion is of a specific

functional form. Often, but not always, the functional form is assumed to be the same

as the functional form of the rational expectations equilibrium. In our case, that means
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conjecturing a perceived law of motion of the form

pt = mt−1 + et (PLM) (0.5)

Even though agents here are endowed with a perceived law of motion of the same functional

form as the rational expectations equilibrium, they still need to estimate the constant mt.

For a given mt, the actual law of motion can be found by replacing the expectations in (1.2)

with the price expectation implied by the perceived law of motion. This yields

pt = µ+ αmt−1 + ηt (ALM) (0.6)

The role of economic theory is thus to determine the mapping between the perceived law of

motion and the actual law of motion. In a rational expectations equilibria, the ALM equals

the PLM so that

mt−1 =
µ

1− α
(0.7)

for all t. The literature on learning deviates from the rational expectations literature in that

at least temporarily, or for some t, the equality does not hold. Instead, agents inside the

model form expectations mt of the mean of the process using some type of learning scheme.

Depending on how agents construct estimates of mt, a learning schemes can be classified as

either decreasing gain learning or constant gain learning.

0.5. Recursive Least Squares/Decreasing gain learning. A common type of learning

is to assume that agents use simple OLS to form beliefs about the parameters in their

perceived law of motion. In this simple example, the OLS estimate of the mean m is

mt = t−1
t−1∑
s=0

pt−s (0.8)

It is common to use the equivalent recursive formulation

mt = mt−1 + t−1 (pt −mt−1) (0.9)
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Figure 1. Convergence of beliefs with decreasing gain learning

(and hence the name recursive least squares). The term in brackets is the innovation, or

the surprise component, of the price observation in period t. If agents by chance happen to

observe exactly what they expected, i.e. if pt = mt−1, then the estimate does not change

so that mt = mt−1, i.e. beliefs about the mean m only change when agents are surprised

by what they observe. Since the weight t−1 put on each new observation is decreasing as t

grows larger (as the history of observations grows longer), agents stop updating their belief

about the mean asymptotically. This is why this type of learning is also known as decreasing

gain learning.

To describe the complete model we put the ALM and the updating equation (1.9) of agents

PLM into the single system pt

mt

 =

 µ

µt−1

+

 0 α

0 1 + αt−1 − t−1

 pt−1

mt−1

+

 1

t−1

 ηt (0.10)

A simulation of the actual price and the evolution of mt is illustrated in Figure 1 (with µ = 1

and α = .5). As we can see from the top panel of the figure, the price moves around quite
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a bit, but this is mostly due to the innovation ηt. Agents estimate of the mean (which is

also the expected price in this simple model) converges quite rapidly towards 2, which can

be seen in the bottom panel of Figure 1. Êt−1pt = 2 is also the rational expectation of the

price.

Of course, recursive least squares learning can be implemented in more complex models

than in this example. The important aspect of recursive least squares is that the weight

on observations is decreasing as time goes on. This is what allows the coefficients in agents

perceived laws of motion to converge.

0.6. Constant gain learning. Another learning mechanism, that is similar to recursive

least squares, is “constant gain learning”. Instead of putting equal weight on all observations,

constant gain learning discounts old observations. This makes sense if agents suspect that

they live in an unstable environment with drifting parameters and can be motivated as

an approximation to fully rational updating in a model with parameter drift (see Evans,

Honkapohja and Williams, forthcoming). The recursive updating equation under constant

gain learning for the simple example above is given by

mt = mt−1 + γ (pt −mt−1) (0.11)

where the weight 0 < γ < 1. We have thus replaced the weight t−1 on the innovation with

the constant γ (which explains the name). We can simulate the model with constant gain

learning in the same way as before pt

mt

 =

 µ

µγ

+

 0 α

0 1 + αγ − γ

 pt−1

mt−1

+

 1

γ

 ηt (0.12)

As we can see from Figure 2, the expected price does not settle down, but instead moves

around also in the later periods. That is because innovations always have some positive
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weight in the constant gain algorithm, while it has a weight that tends to zero as time passes

in the decreasing gain learning algorithm.

Constant gain is common in empirical (or quasi-empirical) work since it solves two prob-

lems. The econometrician do not have to take a stand on when period zero is4 and under

appropriate parameter restrictions, constant gain learning also results in a system that con-

verges to a stationary distribution of pt and mt, which may facilitate estimation.

0.7. Self-Confirming Equilibrium. A rational expectations equilibrium is a fixed point

of a mapping from a perceived law of motion to an actual law of motion. A self confirming

equilibrium is a somewhat weaker concept that nests rational expectations as a special case.

In a self-confirming equilibrium, agents’ perceived law of motion coincide with the actual law

of motion along the equilibrium path. Off-equilibrium behavior of the actual and perceived

law of motion may differ though, but since off-equilibrium behavior is never observed, there

is nothing to indicate to agents that their model is misspecified. The distinction between

4Having to choose when period zero is not a problem that bothers everyone. Ed Prescott has confidently
stated in another context that 1947 was year zero. (Sorry, this is conversationally transmitted knowledge,
so no reference.)
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rational expectations equilibrium and a self-confirming equilibrium is particularly important

if a large agent, say a central bank, has a misspecified model in mind and knowledge of the

true model would imply different behavior.

Lucas (1973) can be interpreted as a story about a self confirming equilibrium where policy

makers estimate a Phillips curve type of relationship and mistakenly believe that there is a

trade off between systematic inflation and unemployment when in fact there according to

Lucas is no such trade off. Lucas argued that this was concealed to policymakers by the

fact that there is a relationship between surprise inflation and unemployment. However,

if policy makers never choose a policy that would reveal this fact to them, this cannot be

discovered through sample correlations, no matter how large the available sample is.

Self-confirming equilibria does not have to be this subtle though. It has also been used

to model learning with misspecified models where enough data would indeed reveal the

misspecification, for instance if agents fitted a different functional form to the data.5

0.8. Constant gain and deterministic systems. We saw above that the agents’ estimate

mt did not converge under constant gain learning. There is one exception to this that might

be useful to know about: When there are no “true” innovations in the model, that is,

if σ2
η = 0, the system converges also with constant gain. This can be demonstrated by

simulating the system pt

mt

 =

 µ

µγ

+

 0 α

0 1 + αγ − γ

 pt−1

mt−1

 (0.13)

and as we can see in Figure 3 the sequence {mt}Tt=1 tends to the REE solution µ
1−α as T →∞.

It can also be seen by the fact that the eigenvalues of the matrix 0 α

0 1 + αγ − γ

 (0.14)

5See Chapter 13 in Evans and Honkapohja (2001) for some examples.
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are zero and 1 +αγ− γ which is smaller than unity in absolute value as long as 0 ≤ γ, α < 1

0.9. The Cob-Web Model. We can use the somewhat more complicated, but still rather

old-skool, Cob-Web model (1.15)

pt = µ+ αEt−1pt + δwt−1 + ηt (0.15)

to illustrate how the RLS algorithm works when agents’ PLM has more than one parameter.

The REE of the Cob-Web model is given by

pt =
µ

1− α
+

δ

1− α
wt−1 + ηt−1 (REE) (0.16)

Agents fit a PLM that again nests the REE

pt = at−1 + bt−1wt−1 + et (PLM)

Plugging the PLM into the structural model gives the ALM

pt = µ+ α (at−1 + bt−1wt−1) + δwt−1 + ηt (ALM) (0.17)
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To set up the RLS algorithm, define a vector φt containing the parameters of the PLM

φt =
(
at bt

)′
(0.18)

and vector of observables as

zt =
(

1 wt

)′
(0.19)

Normally we would estimate φt by OLS

φt =

(
t∑

s=1

zsz
′
s

)−1( t∑
s=1

zsps

)
(0.20)

but we can equivalently estimate φt recursively using

φt = φt−1 + t−1R−1t zt−1
(
pt − φ′t−1zt−1

)
(0.21)

Rt = Rt−1 + t−1
(
zt−1z

′
t−1 −Rt−1

)
(0.22)

where

R−1t =

(
t∑

s=1

zsz
′
s

)−1
(0.23)

1. Convergence to Rational Expectations Equilibria

In the late 1970s and early 1980s there was still a fair amount of scepticism about rational

expectations, as it seemed to impute a lot knowledge to agents. Informal justifications of

rational expectations based on the argument that agents will discover if they make systematic

errors can be exemplified by a quote from Grossman and Stiglitz (1976)

“an individual will eventually observe that the frequency distribution of returns, conditional

on the observable variables, is different from the subjective distribution, and accordingly,

ought to revise his expectation”

This quote was taken as the starting point of a seminal paper by Margaret Bray (1982). In

that paper, Bray demonstrates that under some conditions, and using a particular model in
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which (only a fraction of) agents are boundedly rational and behaves like econometricians,

the system can converge to the rational expectations equilibrium. Bray proved her results

for two different learning technologies. In the first, agents use a fixed coefficient rule to

forecast while using the resulting outcomes to estimate a ”new” rule. Once the estimates of

the parameters of the new rule have converged, the new rule is used as the new forecasting

rule that decisions from then on are based on. These decisions influence outcomes and these

outcomes are used to estimate a new rule, and so on. This procedure is then repeated until

convergence. In the second set-up, agents revise their forecasting rule every time a new data

point becomes available. (This second set up thus resembles recursive least squares learning

as described above.) This was an important result and showed formally that the intuition

conveyed in the quote above could hold up to a more rigorous analysis. Bray took this result

to give some support for the rational expectations hypothesis, but cautioned that her results

hold only asymptotically and that “rational expectations are, if anything, a long run rather

than a short run phenomenon”.

It is also a more involved analysis than suggested by the quote above. The fact that

learning affects decisions, which in turn affect observables that are used in estimation makes

the system self-referential and invalidates a lot of statistical asymptotic theory. This fact

also distinguishes boundedly rational learning from Bayesian (or rational) learning which by

repeated application of Bayes’ rule can be shown to asymptotically converge to the truth.

However, the knowledge required for fully Bayesian learning are almost as large as the

requirement for full information rational expectations, which is one reason why the result of

Bray was considered important as a justification for rational expectations.

While the results of Bray (1982) were important, they were also derived in a rather “simple

and special” model, to use Bray’s own description. Only a fraction of agents are boundedly

rational, the other fraction are fully informed rational agents. The dynamic structure of the

system is such that all exogenous processes are white noise, which simplifies the analysis

considerably. Bray and Savin (1986) and Fourgeaud et al (1986) analyzes the convergence
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properties of the somewhat more complex cobweb model and derive results that give pa-

rameter restrictions for the cobweb model that makes the model converge to the REE with

probability 1.

1.1. A General Method to Analyze Convergence of Learning Models. In a series

of paper written by Marcet and Sargent (1988, 1989a, 1989b), results from stochastic ap-

proximation theory due to Ljung (1977) are used to derive a general procedure for analyzing

convergence of learning models. The method is naturally easiest to explain using a simple

model, though it is also applicable to more complex systems.

A simple example

Consider the Cob-web model

pt = µ+ αÊt−1pt + δwt−1 + ηt (1.1)

where wt is an observable exogenous stochastic process and ηt is an unobservable shock.

Conjecture the perceived law of motion

pt = at−1 + bt−1wt−1 + et (PLM) (1.2)

with the resulting actual law of motion

pt = µ+ α (at−1 + bt−1wt−1) + δwt−1 + ηt (ALM) (1.3)

Agents are assumed to estimate the parameters in the vector φ =
[
a b

]′
of their perceived

law of motion using least squares. This could either be done by OLS

φt =

(
t∑

s=1

zsz
′
s

)−1( t∑
s=1

zsps

)
(1.4)
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but for our purposes it usually more convenient to use the recursive but equivalent updating

scheme

φt = φt−1 + t−1R−1t zt−1
(
pt − φ′t−1zt−1

)
(1.5)

Rt = Rt−1 + t−1
(
zt−1z

′
t−1 −Rt−1

)
(1.6)

where

R−1t =

(
t∑

s=1

zsz
′
s

)−1
(1.7)

The actual law of motion (2.3) and the recursive updating equations (2.5) - (2.6) completely

describe the dynamics of the system. However, the properties of the system in this form

are hard to analyze, partly because of the non-linear mapping between observations and the

actual law of motion, and partly because the dependence of the law of motion on a complete

history of endogenous innovations. The contribution of Marcet and Sargent (1989a) was to

demonstrate that some properties, e.g. the asymptotic behavior, of the system (2.3), (2.5)

and (2.6) is shared by the differential equation

dφ

dτ
= T (φ)− φ (1.8)

where T (φ) is defined as the operator that maps the parameters of the perceived law of

motion into a vector of the corresponding of parameters of the actual law of motion. The

difference equation (2.8) turns out to be much more amenable to analysis. For instance, to

study the convergence properties of the system we can substitute in the vector of parameters

from the perceived law of motion (2.2)

φ =

 1 0

0 1

 a

b

 (1.9)
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and the vector of parameters from the actual law of motion (2.3)

T (φ) ≡

 µ

δ

+

 α 0

0 α

 a

b

 (1.10)

into the differential equation (2.8) to get

dφ

dτ
= T (φ)− φ (1.11)

=

 µ

δ

+

 α− 1 0

0 α− 1

 a

b

 (1.12)

The main result of Marcet and Sargent (1989a) was to show that the system converges to a

resting point with probability 1 if

eig

 α− 1 0

0 α− 1

 < 0 (1.13)

that is if the differential equation (2.8) is stable. Clearly, a resting point dφ
dτ

= 0 implies that

T (φ) = φ or that the perceived law of motion coincides with the actual law of motion. Marcet

and Sargent (1989a) also proved that the only resting point of the system is a self-confirming

equilibria (though they did not call it that at the time).

Checking the stability of the matrix in (2.12) turns out to be significantly and generally

more tractable than analyzing the system (2.3), (2.5) and (2.6) directly. Marcet and Sargent

demonstrated through a series of examples of increasing complexity that the method is

generally applicable and also works for larger systems. First, a simple non-self-referential

system is analyzed followed by the models of Bray (1982), Bray and Savin (1986), a model of

hyperinflation in stock prices due to Fourgeaud et al (1986), and finally, a version of Lucas

and Prescott’s (1971) model of investment under uncertainty. The last example is significant

since it shows that the method is also applicable to analyze convergence of models where

agents learn from endogenous variables, something that had not been demonstrated before.
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In a closely related paper, Marcet and Sargent (1989b) demonstrate that the method can

also be used to find an approximate solution to a hard-to-solve model due to Townsend

(1983). The 1988 AER P&P paper (Marcet and Sargent 1988) summarizes these two papers

using less technical language.

2. In what sense (if any) is learning optimal?

When agents use RLS, even though they do not know the true model they use the informa-

tion in the history of observations optimally. This is not necessarily the case with constant

gain learning. However, it can be shown that constant gain learning is a close approximation

to optimal learning when parameters are truly time varying. Perhaps these two points can

be understood better by reformulating the RLS algorithm as a Kalman filter problem.

Xt|t = AXt−1|t−1 +Kt

(
Zt − AXt−1|t−1

)
(2.1)

The Kalman updating equation (3.1) looks a bit like the RLS updating equation

φt = φt−1 + t−1R−1t zt−1
(
pt − φ′t−1zt−1

)
(2.2)

Can we redefine state space to conform to estimating φt instead of Xt?

Assume that the true parameters φt follow a random walk

φt = φt−1 + εt (2.3)

and that as in the cobweb model agents observe prices

pt = z′tφt + et (2.4)
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The Kalman gain for this system is just a special case of what we have done before

Kt = Pt|t−1zt
(
z′tPt|t−1zt + t−1Σ [etet]

)−1
(2.5)

Pt|t−1 = Pt−1|t−2 − (2.6)

Pt−1|t−2zt
(
z′tPt−1|t−2zt + t−1Σ [etet]

)−1
z′tPt−1|t−2

and the updating equation for the parameters in the agents PLM φt|t is given by

φt|t = φt−1|t−1 +Kt

(
pt − φt−1|t−1

)
(2.7)

Evans, Honkapohja and Williams (2008) show that if the innovations to the parameters

are much smaller than the innovations to the the price, the optimal Kalman gain updating

equation (3.1) can be approximated by the constant gain updating equation

φt = φt−1 + γR−1t zt−1
(
pt − φ′t−1zt−1

)
(2.8)

with γ constant. That is if

E [εtε
′
t] << E [ete

′
t] (2.9)

we have that

φt−1|t−1 +Kt

(
pt − φt−1|t−1

)
≈ φt−1 + γR−1t zt−1

(
pt − φ′t−1zt−1

)
(2.10)

for an appropriately chosen γ.

3. Summing up:

• Agents behave as econometricians.

• Agents can discover REE if fitting the correct functional form and model is E-stable.

• Learning is optimal in the sense of no information wasted if γt = t−1 and actual

parameters fixed.
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• Constant gain not optimal, but makes more sense if there are structural breaks or

parameter drift.
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