
ECONOMETRIC METHODS II: TIME SERIES

LECTURE NOTES ON THE KALMAN FILTER

KRISTOFFER P. NIMARK

The Kalman Filter

We will be concerned with state space systems of the form

Xt = AtXt−1 + Ctut (0.1)

Zt = DtXt + vt (0.2)

where Xt is an n× 1 vector of random variables, ut is an m× 1 vector of i.i.d. shocks with

unit variance, i.e. E
[
utu

′
t+s

]
= I if s = 0 and 0 otherwise. A and C are (n× n and n×m

respectively) coefficient matrices. Zt is an (l × 1) vector of observables and Dt is an (l × n)

selector matrix that combines elements of the state Xt into observable variables and vt is an

(l × 1) vector of measurement errors with covariance Σvv.

Given a system of the form (0.1) - (0.2) , the Kalman filter recursively computes estimates

of Xt conditional on the history of observations Zt, Zt−1, ...Z0 and an initial estimate (or

prior) X0|0 with variance P0|0.

The form of the filter is

Xt|t = AtXt−1|t−1 +Kt

(
Zt −DtXt|t−1

)
(0.3)

and the task is thus to find the Kalman gain Kt so that the estimates Xt|t are in some sense

“optimal”.
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1. A Simple Example

Let’s say that we have a noisy measures z1 of the unobservable process x so that

z1 = x+ v1 (1.1)

v1 ∼ N(0, σ2
1) (1.2)

Since the signal is unbiased, the minimum variance estimate E [x | z1] ≡ x̂ of x is simply

given by

x̂ = z1 (1.3)

and its variance is equal to the variance of the noise

E [x̂− x]2 = σ2
1 (1.4)

Now, let’s say we have an second measure z2 of x so that

z2 = x+ v2 (1.5)

v2 ∼ N(0, σ2
2) (1.6)

With two measures it makes intuitive sense that we should be able to get a better estimate

of x than what we could get with a single signal. How can we combine the information in

the two signals to find the a minimum variance estimate of x? If we restrict ourselves to

linear estimators of the form

x̂ = (1− a) z1 + az2 (1.7)

we can simply minimize

E [(1− a) z1 + az2 − x]2 (1.8)
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with respect to a. Rewrite (1.8) as

E [(1− a) (x+ v1) + a (x+ v2)− x]2 (1.9)

= E [(1− a) v1 + av2]
2

= σ2
1 − 2aσ2

1 + a2σ2
1 + a2σ2

2

where the third line follows from the fact that v1 and v2 are uncorrelated so all expected

cross terms are zero. Differentiate w.r.t. a and set equal to zero

−2σ2
1 + 2aσ2

1 + 2aσ2
2 = 0 (1.10)

and solve for a

a = σ2
1/(σ

2
1 + σ2

2) (1.11)

The minimum variance estimate is then given by

x̂ =
σ2
2

σ2
1 + σ2

2

z1 +
σ2
1

σ2
1 + σ2

2

z2 (1.12)

with conditional variance

E [x̂− x]2 =

(
1

σ2
1

+
1

σ2
2

)−1
(1.13)

It is clear from (1.12) that less weight will be put on a more noisy signal. The expression

for the variance (1.13) of the estimate also shows that the precision of the estimate increases

when a second observation is available as long as the noise variance is finite. In the next

section we will show that finding a is analogous to finding the Kalman gain for a system

with a scalar state and a scalar signal.
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2. The Scalar Filter

Consider the process

xt = ρxt + ut (2.1)

zt = xt + vt (2.2) ut

vt

 ∼ N

0,

 σ2
u 0

0 σ2
v

 (2.3)

We want to form an estimate of xt conditional on zt = {zt, zt−1,...,z0} . In addition to the

knowledge of the state space system (2.1) - (2.3) we have a “prior” belief about the initial

value of the state x0 so that

x0|0 = x0 (2.4)

E (x0 − x0)2 = p0 (2.5)

With this information we can form an estimate of the state in period 1. Using the state

transition equation we get

E
[
x1 | x0|0

]
= ρx0|0 (2.6)

We can call this the prior estimate of xt in period 1 and denote it x1|0. The variance of the

prior estimate then is

E
(
x1|0 − x1

)2
= ρ2p0 + σ2

u (2.7)

where the first term, ρ2p0 , is the uncertainty from period 0 carried over to period 1 and the

second term, σ2
u, is just the uncertainty in period 0 about the period 1 innovation to xt. We

can denote this uncertainty p1|0 so that

p1|0 = ρ2p0 + σ2
u (2.8)
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In period 1 we can also observe the period 1 signal z1. The information in z1 can be

combined with the information in the prior in exactly the same way as we combined the two

signals in the previous section. The optimal weight k1 in

x1|1 = (1− k1)x1|0 + k1z1 (2.9)

is thus given by

k1 =
p1|0

p1|0 + σ2
v

(2.10)

and the period 1 posterior error covariance p1|1 then is

p1|1 =

(
1

p1|0
+

1

σ2
v

)−1
(2.11)

or equivalently

p1|1 = p1|0 − p21|0(p1|0 + σ2
v)
−1 (2.12)

We can again propagate the posterior error variance p1|1 one step forward to get the next

period prior variance p2|1

p2|1 = ρ2p1|1 + σ2
u (2.13)

or

p2|1 = ρ2
(
p1|0 − p21|0(p1|0 + σ2

v)
−1)+ σ2

u (2.14)

By an induction type argument, we can find a general difference equation for the evolution

of prior error variances

pt|t−1 = ρ2
(
pt−1|t−2 − p2t−1|t−2(pt−1|t−2 + σ2

v)
−1)+ σ2

u (2.15)

where

pt|t−s = E
[
xt|t−s − xt

]2
(2.16)
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The associated period t Kalman gain is then given by

kt = pt|t−1(pt|t−1 + σ2
v)
−1

There are two things worth noting about the difference equation for the prior error variances:
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Figure 1. Propagation of prior and posterior distributions: x0 = 1, p0 =
1, σ2

u = 1, σ2
v = 1, zt =

[
3.4 2.2 4.2 5.5

]
(1) (a) The prior error variance is bounded both from above and below so that σ2

u ≤

pt|t−1 ≤ 1/(1− ρ2)σ2
u

(b) For 0 ≤ |ρ| < 1 (2.15) is a contraction

The upper bound in (a) is given by the optimality of the filter and that we cannot do

worse than making the unconditional mean our estimate of xt for all t. The error then is just

the variance of xt, or 1/(1− ρ2)σ2
u. The lower bound is given by that the future is inherently



ECONOMETRIC METHODS II 7

uncertain as long as there are innovations in the xt process, so even with a perfect estimate

of xt−1, xt will still not be known with certainty.

The significance of (b) is that the difference equation converges to a unique number, p∞.

To see this, note that we can rewrite (2.15) as

pt|t−1 = ρ2
(

1

pt−1|t−2
+

1

σ2
v

)−1
+ σ2

u (2.17)

which satisfies Blackwell’s sufficient conditions of discounting and monotonicity (see Ljungquist

and Sargent 2005, p1010).

Figure 1 plots the prior and posterior densities of xt|t and illustrates the convergence of both

the prior and posterior error variances. The parameters in (2.1) - (2.3) was set to ρ = .8 and

p0 = σ2
u = σ2

v = x0 = 1 and the history of observations {zt}4t=1 =
{

3.4, 2.2, 4.2 5.5
}
.

One can see that the dispersion of the distributions converges quite quickly. It is also worth

noting that the dispersion of the distributions at each point is independent of the actual

realizations of zt, though the location of the distribution is not.

3. The Discrete Time Kalman Filter

In this section we derive the formulas of the multivariate filter. We first restate the

assumptions about the form of the filter and the initial conditions, and for the purposes of

this section, it is convenient to first assume that the shock processes are Gaussian. As noted

in the introduction, we will be concerned with systems of the form

Xt = At−1Xt−1 + Ctut (3.1)

Zt = DtXt + vt (3.2)

where Xt is an n × 1 vector of random variables, ut is an m × 1 vector of i.i.d. Gaussian

shocks with unit variance, i.e. E
[
utu

′
t+s

]
= I if s = 0 and 0 otherwise. A and C are (n× n

and n×m respectively) coefficient matrices. Zt is an (l × 1) vector of observables and Dt is
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an (l × n) selector matrix that combines elements of the state Xt into observable variables

and vt is an (l × 1) vector of Gaussian measurement errors with covariance Σvv,t.

Given a system of the form (3.1) - (3.2) , the Kalman filter recursively computes estimates

of Xt conditional on the history of observations Zt, Zt−1, ...Z0 and an initial estimate (or

prior) X0|0 with variance P0|0 defined as

E
(
X0|0 −X0

) (
X0|0 −X0

)′
= P0|0

We further assume that X0|0 is uncorrelated with the shock processes {ut} and {vt} .

3.1. A Recursive Derivation using the Gaussian Errors Assumption. First, we will

follow a method of deriving the filter that has been described as “simple and direct but to

some degree uninspiring”.1

First, note that given the assumption above, X1 and Z1 are conditionally joint normally

distributed random variables X1

Z1

 ∼ N

 A0X0|0

D1A0X0|0

 ,
 P1|0 P ′1|0D

′
1

D1P1|0 D1P
′
1|0D

′
1 + Σvv,1

 (3.3)

where

P1|0 = AP0|0A
′ + C1C

′
1 (3.4)

the entries in the covariance matrix (3.3) can be found by evaluating E
(
X1 − A0X0|0

) (
X1 − A0X0|0

)′
,

E
(
Z1 −D1A0X0|0

) (
Z1 −D1A0X0|0

)′
and E

(
Z1 −DtAtX0|0

) (
X1 − AtX0|0

)′
conditional on

X0|0 and P0|0. We know that an conditional minimum variance estimate of jointly normally

distributed variables are given by

E [X1 | Z1] = A0X0|0 + P ′1|0D1

(
D1P

′
1|0D

′
1 + Σvv

)−1 (
Z1 −D1A0X0|0

)
(3.5)

1Anderson and Moore (2005).
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so that K1 must be

K1 = P ′1|0D1

(
D1P

′
1|0D

′
1 + Σvv,1

)−1
The posterior estimate X1|1 has the conditional covariance

E
(
E
[
X1 | Z1, X0|0

]
−X1

) (
E
[
X1 | Z1, X0|0

]
−X1

)′
(3.6)

= P1|0 − P ′1|0D′1
(
D1P

′
1|0D

′
1 + Σvv

)−1
D1P1|0 (3.7)

= P1|1 (3.8)

To find the prior error covariance for period 2, we can propagate (3.8) forward

P2|1 = A1P1|1A
′
1 + CC ′ (3.9)

or

P2|1 = A1

(
P1|0 − P1|0D

′
1

(
D1P1|0D

′
1 + Σvv

)−1
D1P1|0

)
A′1 + C2C

′
2 (3.10)

Equation (3.10) can be iterated forward in order to compute the prior error covariances for

any period. Note again that the error covariances are independent of the observations, and

could in principle be computed before the filter is run. For arbitrary t, we then have the

main formulas needed in order to run the filter

Pt|t−1 = At−1

(
Pt−1|t−2 − Pt−1|t−2D′t−1

(
Dt−1Pt−1|t−2D

′
t−1 + Σvv,t−1

)−1
Dt−1Pt−1|t−2

)
A′1

+CtC
′
t (3.11)

Kt = Pt|t−1D
′
t

(
DtPt|t−1D

′
t + Σvv,t

)−1
(3.12)

3.2. A Gram-Schmidt Orthogonalization Approach. An alternative way to derive the

Kalman filter is to use a Gram-Schmidt orthogonalization of the sequence of observable vari-

ables {Zt}Tt=1. This approach uses the projection theorem directly and also makes it clearer

why the recursive form of the Kalman filter is equivalent to re-estimating the unobservable

state in each period using the complete history of observations.
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As before, we are given an initial prior about the state in period 0 which we will denote

X0|0 with variance P0|0. Just like before, we also want to find a filter of the form

Xt|t = AtXt−1|t−1 +Kt

(
Zt −DtXt|t−1

)
(3.13)

that is optimal in some sense. Above, where we assumed Gaussian errors, we used results

about jointly distributed Gaussian variables to derive the filter and under the Gaussian

assumption, the Kalman filter is the minimum variance estimator of the unobservable state.

In this section we drop the Gaussian assumption and show that the Kalman filter is the best

linear estimator of Xt (in the minimum variance sense) regardless of the distribution of the

errors.

3.2.1. A Linear Minimum Variance Estimator. We first state the general period t problem:

min
α
E

[
Xt −

t∑
j=1

αjZt−j+1 − α0X0|0

][
Xt −

t∑
j=1

αjZt−j+1 − α0X0|0

]′
(3.14)

Our task is to find the coefficients (the αs) in (3.14). That is, we want to find the linear projec-

tion of Xt on the history of observables Zt, Zt−1, ...Z1 and our prior X0|0. From the projection

theorem, we know that this will be given by the linear combination
∑t

j=1 αjZt−j+1−α0X0|0

that gives errors that are orthogonal to Zt, Zt−1, ...Z1 and our prior X0|0, that is, find the αs

so that (
Xt −

t∑
j=1

αjZt−j+1 − α0X0|0

)
⊥ {Zj}tj=1 (3.15)

and (
Xt −

t∑
j=1

αjZt−j+1 − α0X0|0

)
⊥ X0|0 (3.16)
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hold. We could of course just compute this directly as

P
(
Xt | Zt, Zt−1, ...Z1, X0|0

)
(3.17)

= EXt

[
Z ′t Z

′
t−1 Z ′1 X ′0|0

]′ ×(
E
[
Z ′t Z

′
t−1 Z ′1 X ′0|0

] [
Z ′t Z

′
t−1 Z ′1 X ′0|0

]′)−1 [
Z ′t Z

′
t−1 Z ′1 X ′0|0

]′
However, this would not be very convenient as we would need compute the covariances of

vectors that increase in size as time passes and the dimension of the history of observations

grows. Instead, we will use a Gram-Schmidt orthogonalization and a result about projections

on uncorrelated variables to derive the recursive form (3.13) of the filter. Hopefully, it will

also be clear why the recursive formulation is equivalent to evaluating the expression (3.17).

3.2.2. Gram-Schmidt Orthogonalization in Rm. The columns of a matrix can be orthogo-

nalized using the so called Gram-Schmidt procedure. It consists of simply taking the first

column as it is, subtracting the projection of the second column on the first from the second

column and use the result as the “new” second column. The projection of the third column

on the first two are then subtracted from the third column and the result replaces the third

column and so on.

Let the matrix Y (m× n) have columns y1,y2, ....yn.

Y =
[

y1 y2 · · · yn

]
(3.18)

We want to construct a new matrix Ỹ with the same column space as Y that has orthogonal

columns so that Ỹ Ỹ ′ is a diagonal matrix. The first column can be chosen arbitrarily so we

might as well keep the first column of Y as it is. The second column should be orthogonal to

the first. One way of doing this is to subtract the projection of y2 on y1 from y2 and define

a new column vector ỹ2

ỹ2 = y2−y1 (y′1y1)
−1

y′1y2 (3.19)
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or

ỹ2 = (I − Py1) y2 (3.20)

and then subtract the projection of y3 on [y1 y2] from y3 to construct ỹ3 and so on. Since

we can reconstruct the original matrix using a linear combinations of the orthogonal columns

we know that the two matrices share the same column space. Below, we will use the same

procedure but with the inner product defined as E(XY ′) rather than
∑n

i=1 xiyi to construct

the innovations sequence that span the same space as the complete history of observable

variables.

3.2.3. Projections on uncorrelated variables. The usefulness of the Gram-Schmidt orthogo-

nalization process for deriving the recursive form of the Kalman filter stems from the following

result about projections on uncorrelated variables.

Let
{
Z̃j

}t
j=1

denote a sequence of uncorrelated mean zero variables so that

E
[
Z̃tZ̃t−s

]
= 0 : s 6= 0 (3.21)

then

P
(
Xt|Z̃t, Z̃t−1, ...Z̃1

)
= P

(
Xt|Z̃t

)
+ P

(
Xt|Z̃t−1

)
+ ...+ P

(
Xt|Z̃1

)
(3.22)

(To see why, just write out the projection formula. If the variables that we project on are

orthogonal, the inverse will be taken of a diagonal matrix.)

3.2.4. A recursive formulation via projections on the innovation sequence. As before, we will

start from the first period problem of how to optimally combine the information in the prior

X0|0 and the signal Z1. Use that

Z1 = D1A0X0 +D1Cu1 + v1 (3.23)
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and that we know that ut and vt are orthogonal to X0|0 to first find the optimal projection

of Z1 on X0|0

Z1|0 = D1A0X0|0 (3.24)

We can then define the period 1 innovation Z̃1 in Z1 as

Z̃1 = Z1 − Z1|0 (3.25)

. By result (3.22) above we know that

P
(
X1|Z̃1, X0|0

)
= P

(
X1|Z̃1

)
+ P

(
X1|X0|0

)
(3.26)

since Z̃1⊥X0|0 and P
(
Z1|X0|0

)
= D1A0X0|0. From the projection theorem, we know that we

should look for a K1 such that the inner product of the projection error and Z̃1 are zero

〈
X1 −K1Z̃1, Z̃1

〉
= 0 (3.27)

Defining the inner product 〈X, Y 〉 as E (XY ′) we get

E
[(
X1 −K1Z̃1

)
Z̃ ′1

]
= 0 (3.28)

E
[
X1Z̃

′
1

]
−K1E

[
Z̃1Z̃

′
1

]
= 0 (3.29)

K1 = E
[
X1Z̃

′
1

] (
E
[
Z̃1Z̃

′
1

])−1
(3.30)

We thus need to evaluate the two expectational expressions in (3.30). Before doing so it

helps to define the state innovation

X̃1 = X1 −X1|0 (3.31)
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that is, X̃1 is the one period error. The first expectation factor of K1 in (3.27) can now be

manipulated in the following way

E
[
X1Z̃

′
1

]
= E

(
X̃1 +X1|0

)
Z̃ ′1 (3.32)

= EX̃1Z̃
′
1 (3.33)

= EX̃1

(
X̃ ′1D

′ + v′1

)
(3.34)

= P1|0D
′ (3.35)

where the first equality uses the definition (3.31) the second uses that the innovation is

orthogonal to X1|0 , the third equality uses the definition of the innovation (3.27). The

last line uses the definition of the prior error covariance and that E
(
X̃1v

′
1

)
= 0 since

E (X1v
′
1) = 0 and E

(
X1|0v

′
1

)
= 0.

Evaluating the second expectation factor

E
[
Z̃1Z̃

′
1

]
= E

[(
D1X̃1 + vt

)(
D1X̃1 + vt

)′]
(3.36)

= D1P1|0D
′
1 + Σvv (3.37)

together with (3.35) gives us what we need for the formula for K1

K1 = P1|0D
′
1

(
D1P1|0D

′
1 + Σvv

)−1
(3.38)

where we know that P1|0 = A0P0|0A
′
0 + C0C

′
0 . We can add the projections of X1 on Z̃1 and

X0|0 to get our linear minimum variance estimate X1|1

X1|1 = P
(
X1|X0|0

)
+ P

(
Xt|Z̃1

)
(3.39)

= A0X0|0 +K1Z̃1 (3.40)
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Again, we can use the estimate X1|1 to form a projection of X2 on X0|0 and Z̃1.

X2|1 = A1X1|1

To see that projecting on the prior and the innovation is equivalent to projecting on the

prior and the actual observation note that

X2|1 = A1A0X0|0 + A1K1Z̃1 (3.41)

= A1A0X0|0 + A1K1

(
Z1 − Z1|0

)
(3.42)

= A1 (A0 −K1DA0)X0|0 + A1K1Z1 (3.43)

Then, since we can always back out the history of observations as a linear combination of

innovations, we know that the sequence of innovations and observable span the same space.

(Of course, we also need to be able to get the innovations sequence as a linear combination

of the observables sequence.) To find the period innovation Z̃2, that is the component of Z2

that is orthogonal to Z2|1, we again subtract the predicted component from the actual

Z̃2 = Z2 −D2A1X1|1 (3.44)

and the period 2 posterior estimate of X2 is then given by

X2|2 = A1X1|1 +K2Z̃2 (3.45)

with

K2 = P2|1D
′
1

(
D1P2|1D

′
1 + Σvv

)−1
(3.46)

However, we have not yet derived an expression for the prior covariance matrices P2|1. We

can perhaps go directly to deriving a formula for Pt|t−1 without loosing anyone. We start by

finding an expression for Pt|t. We can rewrite

Xt|t = KtZ̃t +Xt|t−1 (3.47)
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as

Xt −Xt|t +KtZ̃t = Xt −Xt|t−1 (3.48)

by adding Xt to both sides and rearranging. Since the period t error Xt−Xt|t is orthogonal

to Z̃t the variance of the right hand side must be equal to the sum of the variances of the

terms on the left hand side. We thus have

Pt|t +Kt

(
DPt|t−1D

′ + Σvv

)
K ′t = Pt|t−1 (3.49)

or by rearranging

Pt|t = Pt|t−1 −Kt

(
DPt|t−1D

′ + Σvv

)
K ′t (3.50)

= Pt|t−1 − Pt|t−1D′t
(
DtPt|t−1D

′
t + Σvv

)−1 (
DtPt|t−1D

′
t + Σvv

)
(3.51)

×
(
Pt|t−1D

′
t

(
DtPt|t−1D

′
t + Σvv

)−1)′
(3.52)

= Pt|t−1 − Pt|t−1D′t
(
DtPt|t−1D

′
t + Σvv

)−1
DtPt|t−1 (3.53)

It is then straight forward to show that

Pt+1|t = AtPt|tA
′
t + CC ′ (3.54)

= A′t

(
Pt|t−1 − Pt|t−1D′t

(
DtPt|t−1D

′
t + Σvv

)−1
DtPt|t−1

)
A′t + CC ′ (3.55)

3.3. Summing up. For the state space system

Xt = AtXt−1 + Ctut (3.56)

Zt = DtXt + vt (3.57) ut

vt

 ∼ N

0,

 In 0n×l

0l×n Σvv

 (3.58)
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we get the state estimate update equation

Xt|t = AtXt−1|t−1 +Kt

(
Zt −DtXt|t−1

)
(3.59)

The recursive formulas for the Kalman gain

Kt = Pt|t−1D
′
t

(
DtPt|t−1D

′
t + Σvv

)−1
(3.60)

and the prior error covariance

Pt+1|t = At

(
Pt|t−1 − Pt|t−1D′t1

(
DtPt|t−1D

′
t + Σvv

)−1
DtPt|t−1

)
A′t

+Ct+1C
′
t+1 (3.61)

The innovation sequence can be computed recursively from the innovation representation

Z̃t = Zt −DtXt|t−1 (3.62)

Xt+1|t = At−1Xt|t−1 + At−1KtZ̃t (3.63)

4. The Time Invariant Filter

Under some conditions, the Kalman filter will be invariant, by which we mean that the

Kalman gain matrix Kt is time invariant. Since Kt is a function of the prior error covariance

matrix Pt|t−1 , time invariance of Kt requires time invariance of Pt|t−1. A necessary but not

sufficient condition for time invariance of the filter is that the associated state space system

is time invariant. That is, the matrices At, Ct, Dt and the measurement error covariance Σvv

should not depend on t. In this section we will therefore suppress the time subscripts on

the coefficient matrices. However, time invariant matrices in the state space system is not

enough. We also need to restrict the initial error covariance P1|0 to be the solution to the
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Riccati equation

P = A′
(
P − PD′ (DPD′ + Σvv)

−1
DP

)
A′ + CC ′ (4.1)

We thus need to show that a solution exists which we will show by demonstrating that

iterating on (3.61) yields a convergent sequence. As before, we can argue heuristically that

we know that P is bounded from both above and below by

CC ′ ≤ P ≤ ΣXX (4.2)

where ΣXX = E (Xt − µx) (Xt − µx)′ . The lower bound come from the fact that even when

the current state is known with certainty, that is Pt|t = 0, the future values of the state are

still uncertain as long as there are non-zero variance innovations hitting the state. The upper

bound comes from that we could always choose K = 0 and the variance of the estimates

would then be the same as the unconditional variance of the state Xt. To show that the

limit of iterating on (3.61) exists, we will show that for arbitrary initial P1|0, the sequence{
Pt|t−1

}∞
t=1

is either monotonically increasing or decreasing. We do this by relying on the

boundedness of P and a monotonicity argument about the sequence
{
Pt|t−1

}∞
t=1

.

4.0.1. Monotonicity of
{
Pt|t−1

}∞
t=1

. A sequence of covariance matrices Pt|t−1are said to be

increasing monotonically if

P1|0 ≤ P2|1 ≤ ... ≤ Pt|t−1 : ∀ t (4.3)

where the larger than or equal sign means that Pt+1|t − Pt|t−1 is a positive semi definite

matrix. A monotonically decreasing sequence is defined analogously, but with the larger

than or equal signs replaced by less than or equal signs.

We start by defining the prior state error X̃t

X̃t = Xt −Xt|t−1 (4.4)
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We then have

X̃t+1 = (A− AKD) X̃t −Ktvt+1 + Cut+1 (4.5)

To see why, just plug the definition (4.4) into (4.5)

Xt+1 −Xt+1|t = (A− AKtD)
(
Xt −Xt|t−1

)
− AKtvt+1 + Cut+1 (4.6)

The variance of (4.5) can then be written as

Pt+1|t = (A− AKtD)Pt|t−1 (A− AKtDt)
′ + AKtΣvvK

′
tA
′ + CC ′ (4.7)

which we can use to demonstrate monotonicity of
{
Pt|t−1

}∞
t=1

.

We will define two sequences of
{
Pt|t−1

}∞
t=1

and
{
P̂t|t−1

}∞
t=1

which only differ in the values

of their initial conditions. We also have the associated Kalman gain sequences {Kt}∞t=1 and{
K̂t

}∞
t=1

. We have that

P0|−1 = 0 (4.8)

P̂1|0 = 0 (4.9)

so we know that for any t

Pt|t−1 = P̂t+1|t (4.10)

To prove that
{
P̂t|t−1

}∞
t=1

is monotonically increasing we will rely on the optimality properties

of the filter:

Pt+1|t = min
K∗

1

[
(A− AK∗tD)Pt|t−1 (A− AK∗tD)′ + AK∗t ΣvvK

∗′
t A
′ + CC ′

]
(4.11)

=
[
(A− AKtD)Pt|t−1 (A− AKtD)′ + AKtΣvvK

′
tA
′ + CC ′

]
(4.12)
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where K0 is the Kalman gain that minimizes the prior error covariance. We thus have

Pt+1|t = (A− AKtD)Pt|t−1 (A− AKtD)′ + AKtΣvvK
′
tA
′ + CC ′ (4.13)

≥ (A− AKtD) P̂t|t−1 (A− AKtD)′ + AKtΣvvK
′
tA
′ + CC ′ (4.14)

≥ min
K∗

1

[
(A− AK∗0D) P̂0|−1 (A− AK∗0D)′ + AK∗0ΣvvK

∗′
0 A
′ + CC ′

]
(4.15)

=
(
A− AK̂0D

)
P̂0|−1

(
A− AK̂0D

)′
+ AK̂0Σ

′
vvK̂

′
0A
′ + CC ′ (4.16)

= P̂t+1|t (4.17)

so for arbitrary t we have that

Pt+1|t ≥ P̂t+1|t

but since Pt|t−1 = P̂t+1|t we know that P̂t|t−1 ≤ P̂t+1|t, that is,
{
P̂t|t−1

}∞
t=1

is an increasing

sequence starting from P̂1|0 = 0. Together with boundedness, this implies that the limit

exists. A symmetric argument can be made for monotonically decreasing sequence starting

with some upper bound as initial condition.


