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This Appendix contains additional material for the paper Man-bites-dog Business Cycles.
The next section derives the equilibrium expressions for the beauty contest model from
Section 3 of the main paper. This is followed by a detailed description of how to solve the
dynamic business cycle model of Section 4. The last section describes the Multiple-block
Metropolis-Hastings algorithm used to estimate the business cycle model and contains some
convergence diagnostics for the Markov chains. The Matlab codes used to estimate the model
and plot the figures in the paper are available at the author’s web site www.kris-nimark.net.

1. Solving the model of Morris and Shin (2002)

Here we describe the steps required to solve the model of Morris and Shin (2002) that
were omitted from the main text.

1.1. Set up. The model of Morris and Shin (2002) consists of a utility function Uj for agent
j

Uj = − (1− r) (aj − x)2 − r
(
Lj − L

)
(1.1)

where aj is the action taken by agent j and where

Lj ≡
∫

(ai − aj)2 di (1.2)

and

L ≡
∫
Lidi (1.3)

The first order condition for agent j is given by

aj = (1− r)E [x | Ωj] + rE [a | Ωj] (1.4)

where a is the cross-sectional average action defined as

a ≡
∫
aidi (1.5)
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1.2. Equilibrium. Instead of using the method of undetermined coefficients employed by
Morris and Shin in their original paper, we will use a method that explicitly expresses the
average action a as a function of higher order expectations of x. Of course, the resulting
expressions describing the equilibrium are the same regardless of solution method. However,
first expressing the solution in terms of higher order expectations is more convenient since
we want to solve the model using two different information sets. It also helps to demonstrate
how and why a man-bites-dog information structure affect the equilibrium average action.

Start by taking averages of (1.4) to get

a = (1− r)x(1) + ra(1) (1.6)

where a(1) is the average expectation of the average action a, i.e.

a(1) ≡
∫
E [a | Ωj] dj (1.7)

Substituting the terms in (1.6) into (1.7) we get

a(1) = (1− r)x(2) + ra(2) (1.8)

By taking the average expectation of (1.8) and so on, gives a general expression for the k
order expectation of the average action

a(k) = (1− r) θ(k+1) + ra(k+1) (1.9)

Now, repeated substitution of (1.9) into (1.6) and simplifying gives the convergent sum

a = (1− r)
∞∑
k=1

rk−1x(k) (1.10)

which is expression (3.5) in the main text. The expression (1.10) describes the average action
regardless of whether the signal y is available or not.

1.3. Higher order expectations when S = 0. From Section 2 of the main text we know
that agent j’s conditional (first order) expectations of x when S = 0 is given by

E
(
x | Ω0

j

)
= g0xj (1.11)

where

g0 ≡
σ−2
ε

σ−2
ε + σ−2

Taking averages across agents we get the average first order expectation

x(1) =

∫
E
(
x | Ω0

j

)
dj (1.12)

= g0x+ g0

∫
εjdj (1.13)

= g0x (1.14)



APPENDIX TO MAN BITES DOG 3

since
∫
εjdj = 0. To find agent j’s second order expectation, use that the model consistent

expectation of x(1) equals the expectation of g0x

E
(
x(1) | Ω0

j

)
= E

(
g0x | Ω0

j

)
(1.15)

= g0E
(
x | Ω0

j

)
(1.16)

= g2
0xj (1.17)

Again, averaging across agents we get an expression for the average second order expectation
about x

x(2) = g2
0x (1.18)

repeating the same steps to get the average expectation about x(2), and so on, yields a general
expression for the k order expectation when S = 0

x(k) = gk0x (1.19)

which is the expression (3.7) in the main text.

1.4. Higher order expectations when S = 1. When agents observe both xj and y, agent
j’ conditional expectation of x is given by

E
(
x | Ω1

j

)
= E (x | y) + E (x | [xj − E (x | y)]) (1.20)

= gyy + gx (xj − gyy) (1.21)

where

gy ≡
σ−2
η

σ−2
η + γ−1σ−2

, gx ≡
σ−2
ε

σ−2
ε + σ−2

η + γ−1σ−2
(1.22)

Taking averages

x(1) =

∫
E
(
x | Ω1

j

)
dj (1.23)

= gyy + gx (x− gyy) (1.24)

Agent j’s expectation of the average first order expectation is then given by

E
(
x(1) | Ω1

j

)
= E

(
gyy + gx (x− gyy) | Ω1

j

)
(1.25)

= gyy + gx (gyy + gx (xj − gyy)− gyy) (1.26)

= gyy + gx (gx (xj − gyy)) (1.27)

= gyy + g2
x (xj − gyy) (1.28)

x(2) = gyy + g2
x (x− gyy) (1.29)

Repeating the procedure gives a general expression for the k order expectation

x(k) = gyy + gkx (x− gyy) (1.30)

which is expression (3.8) in the main text.
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1.5. The average action as a function of x and y. Plugging in the expression (1.19) for
the higher order expectations when S = 0 into the average action (1.10) gives

a = (1− r)
∞∑
k=1

rk−1gk0x (1.31)

=
(1− r) g0

1− rg0

x (1.32)

which corresponds to expression (3.11) in the main text. Plugging in the expression (1.30)
for the higher order expectations when S = 1 into the average action (1.10) gives

a = (1− r)
∞∑
k=1

rk−1
(
gyy + gkx (x− gyy)

)
(1.33)

=
(1− r) gx
1− rgx

(x− gyy) + gyy (1.34)

=
(1− r) gx
1− rgx

x+

(
1− (1− r) gx

1− rgx

)
gyy (1.35)

which corresponds to expression (3.12) in the main text.
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2. Solving the dynamic business cycle model

This Appendix describes how to find the equilibrium dynamics of the model using an
iterative version of the method of undetermined coefficients. The algorithm is similar to that
described in more detail in Nimark (2011) but adjusted to allow for time varying information
structure. We start by defining some useful vectors and matrices and by making (informed)
conjectures about the functional form of the solution. Using these definitions and conjectures
we can then describe the two main steps in the solution algorithm. These steps are (i) Finding
an expression for the endogenous variables as a function of the state taking the law of motion
of the state as given. (ii) Find the law of motion of the state, taking the function mapping
the state into endogenous outcomes as given. A cookbook style recipe describing an iterative
algorithm to find a fixed point for this problem ends the section.

2.1. Definitions and conjectures. Here, we present the definition of the state and the
conjectured forms for how the state evolves over time and how the endogenous variables
inflation and output depend on the state.

2.1.1. The law of motion of the state. First, define the exogenous state vector xj,t as

xj,t ≡
[
aj,t
dj,t

]
(2.1)

and note that ∫
xj,tdj = xt (2.2)

In order to make optimal decisions, agents will need to form higher order expectations about
the exogenous state vector xt and agent j’s hierarchy of expectations is defined as

Xj,t ≡

[
xj,t

E
[
X

(k−1)
t | Ωj,t

] ]
(2.3)

where

X
(k−1)
t ≡


xt

x
(1)
t
...

x
(k−1)
t

 (2.4)

and

x
(k+1)
t ≡

∫
E
[
x

(k)
t | Ωj,t

]
dj (2.5)

The aggregate state Xt is defined as the cross-sectional average of the expectations hierarchy
(2.3)

Xt ≡
∫
Xj,tdj (2.6)

We will conjecture (and later verify) that the state Xt follows a VAR process

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (2.7)
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Below we will show how common knowledge of rational expectations can be used to derive
the law of motion (2.7) for Xt.

2.1.2. The endogenous variables as function of the state. We will also conjecture (and later
verify) that output and inflation can be written as linear functions of the aggregate hierarchy
of expectations Xt, the lagged interest rate rt−1 and the current aggregate shocks ut[

yt
πt

]
= G(st)Xt +Grrt−1 +Guut (2.8)

It will be convenient to partition G (st) into row vectors[
yt
πt

]
=

[
Gy(s

t)
Gπ(st)

]
Xt +Grrt−1 +Guut (2.9)

Solving the model implies finding the matrices G (st) , Gr, Gu,M(st) and N(st).

2.2. Inflation and output as functions of the state. For a given law of motion M(st)
and N(st) we can find G (st) by iterating on the (vector) Euler equation determined by the
Euler equation for island j consumption

cj,t = E
[
cj,t+1 | Ωj

t

]
− rt + E

[
πBj,t+1 | Ωj

t

]
+ dj,t (2.10)

and the island j Phillips curve

πj,t = λ(1 + ϕδ) (πt − πj,t) + λcj,t + λϕyt − λ1(+ϕ)aj,t (2.11)

+βE
(
πj,t+1 | Ωj

t

)
+ λξ1

j,t + λϕξ2
j,t

(where we use the definitions of pBj,t and yj,t from the main text). We can then write the
consumption Euler equation and the Phillips curve in vector form as[

cj,t
πj,t

]
= A

∫
E

([
ct+1

πt+1

]
| Ωj,t

)
+B(st)Xj

t + C(st)Xt +Grrt−1 +Guut (2.12)

where the matrices A,B(st), C(st), Gr and Gu are given by

A =

[
1 1
0 β

]
(2.13)

B(st) =

[
e2

−λ(1 + ϕ)e1

]
+

[
0

−λ(1 + ϕδ)e2Gj (st)

]
+

[
0

λe1Gj (st)

]
(2.14)

C(st) =

[
φπGπ(st) + φyGy(s

t)
0

]
+

[
0

λ(1 + ϕδ)Gπ(st)

]
(2.15)

+

[
0

λϕGy(s
t)

]
+

[
0

−λ(1 + ϕδ)Gπ(st)

]
Gr = −

[
φr(1− φr)−1 (λ+ λϕ)φr(1− βφr)−1

]′
(2.16)

Gu = −
[

(1− φr)−1 (λ+ λϕ) (1− βφr)−1
]′ [

σr 0
]
e′r (2.17)
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The matrices Gr and Gu was computed by direct forward substitution of the effect of the
lagged interest rate rt−1 and the monetary policy shock urt on future consumption and infla-
tion rates. The row vector e′r picks out the element of ut that corresponds to the monetary
policy shock urt in the Taylor rule.

2.2.1. Aggregation. Since we are not interested in deriving the dynamics of prices on an
individual island, we can proceed by taking averages across islands and use the conjectured
form (2.8) to get

G
(
st
)
Xt =

(
B(st) + C(st)

)
Xt (2.18)

+ωAG
(
st+1

1

)
M
(
st+1

1

)
HXt

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
HXt

The expression (2.18) uses that expected output and inflation is given by

E

([
yt+1

πt+1

]
| Ωj,t

)
= ωAG

(
st+1

1

)
M
(
st+1

1

)
HXt (2.19)

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
HXt

where st+1
n denotes the history st+1 with st+1 = n. That is, the expectations of period t + 1

inflation and output have to be weighted by the probability that there will be a man-bites-
dog signal available in the next period. Equating coefficients then implies that G (st) must
satisfy

G
(
st
)

=
(
B(st) + C(st)

)
(2.20)

+ωAG
(
st+1

1

)
M
(
st+1

1

)
H

+ (1− ω)AG
(
st+1

0

)
M
(
st+1

0

)
H

For given matrices A,B(st), C(st), H and M(st) the matrices G (st) (there is one matrix
G (st) for each history st) can be found by iterating on (2.20). This will be one important
component in the iterative algorithm to solve the model described below.

2.3. The law of motion of the state. We now describe how to find the law of motion for
the state. We have conjectured above that it will take the form

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (2.21)

and the partly, this law of motion is exogenous. That is, the first two row are given by the
law of motion for the exogenous aggregate states at and dt

xt = ρxt−1 + νtut

where

ρ =

[
ρa 0
0 ρd

]
(2.22)
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and

νt =

[
σ2
a 0

0 σ2
d

]
if st = 0 (2.23)

νt =

[
γσ2

a 0
0 σ2

d

]
if st = 1 (2.24)

In order to find the remaining component of M(st) and N(st) we need to derive a law of
motion for the average hierarchy of higher order expectations.

2.3.1. The filtering problem of agent j. Since Xt is made up of agents’ higher order expecta-
tions about xt, the endogenous part of M(st) and N(st) depend on the how agents update
their higher order expectations. For given M(st) and N(st) and for given G (st) the filtering
problem of the agents can be described by the state space system made up of the law of
motion (2.21) and the measurement equation

zj,t = D(st)Xt +
[
Ru(st) Rj(st)

] [ ut
uj,t

]
(2.25)

Since the man-bites-dog signal is not always available, the matrices D(st) and Ru(st) and
Rj(st) agents’ measurement equation vary over time and are given by

D(st) =


e1

e2

Gπ(st)
Gy(s

t) +Gπ(st)
φyGy(s

t) + φπGπ(st)

 , Ru(st) =

[
04×4 04×1

0 σr

]
, (2.26)

Rj(st) =


σj,a 0 0 0 0
0 σj,d 0 0 0
0 0 σξ1 0 0
0 0 0 σξ2 0
0 0 0 0 0

 (2.27)

when st = 0 and

D(st) =


e1

e2

Gπ(st)
Gy(s

t) +Gπ(st)
φyGy(s

t) + φπGπ(st)
e1

 , Ru(st) =

 04×4 04×1 04×1

01×4 σr 0
01×4 0 ση

 , (2.28)

Rj(st) =


σj,a 0 0 0 0 0
0 σj,d 0 0 0 0
0 0 σξ1 0 0 0
0 0 0 σξ2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (2.29)
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when st = 1. Since the system is conditionally linear gaussian, agent j’s state estimate

Xj,t|t ≡ E [Xt | Ωj,t] (2.30)

is optimally given by the Kalman update equation

Xj,t|t = M(st)Xj,t−1|t−1 +K(st)
[
zj,t −D(st)M(st)Xj,t−1|t−1

]
(2.31)

The Kalman gain K(st) is given by the standard formula for systems in which the structural
disturbances are correlated with the measurement errors

K(st) =
[
P (st)D′(st) +N ′(st)R(st)

] [
D(st)P (st)D′(st) +R(st)R

′(st)
]−1

(2.32)

The matrix R(st) is the square root of the common and island specific measurement error
covariance matrix

R(st) ≡
[
Ru(s

t) Rj(s
t)
]

(2.33)

and P (st) is defined as

P (st) = E
(
Xt −Xj,t|t−1,st

) (
Xt −Xj,t|t−1,st

)′
(2.34)

with

Xj,t|t−1,st ≡ E
(
Xt | zt−1

j , st
)

That is, the state estimation error covariance P (st) is the covariance of the state estimation
errors “prior” to observing zj,t but “posterior” to observing st. The state estimation errors
are thus conditionally normally distributed with covariance P (st) given by

P (st) = M(st)

 P (st−1)− [P (st−1)D′(st−1) +N ′(st−1)R(st)]×
[D(st−1)P (st−1)D′(st−1) +R(st−1)R′(st−1)]

−1×
[P (st−1)D′(st−1) +N ′(st−1)R(st−1)]

′

M ′(st) (2.35)

+N(st)N(st)

(The term in brackets is the posterior state estimation error in period t−1.) The expressions
for K(st) and P (st) are standard formulas for the Kalman filter recursions for state space
systems with time-varying (but known) parameters (see for instance Anderson and Moore
1979).

2.3.2. The average expectation hierarchy. Substituting in the expression for zt(j) into (2.31)
gives

Xj,t|t =
[
I −K(st)D(st)

]
M(st)Xj,t−1|t−1 (2.36)

+K(st)D
(
st
)

Xt +K(st)R
(
st
) [ ut

uj,t

]
Taking averages across agents and using the law of motion for Xt to get

Xt|t =
[
I −K(st)D(st)

]
M(st)Xt−1|t−1 (2.37)

+K(st)D
(
st
) [
M(st)Xt−1 +N(st)ut

]
+K(st)Ru (st) ut
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since
∫

ut(j)dj = 0. Amending the result to the exogenous law of motion for xt results in
the law of motion for the entire system[

xt
Xt|t

]
=

[
ρ 0
0 0

] [
xt−1

Xt−1|t−1

]
+

[
0

K(st)D(st)M(st)

] [
xt−1

Xt−1|t−1

]
(2.38)

+

[
0 0
0 [I −K(st)D(st)]M(st)

] [
xt−1

Xt−1|t−1

]
+

[
ν(st)

K(st)D(st)N(st)

]
ut +K(st)Ru (st) ut

For each st we thus need to find a fixed point of

M
(
st
)

=

[
ρ 0
0 0

]
+

[
0

K(st)D(st)M(st)

]
+

[
0 0
0 [I −K(st)D(st)]M(st)

]
(2.39)

N
(
st
)

=

[
ν(st)

K(st)D(st)N(st)

]
+K(st)Ru (st) (2.40)

where the last row and/or columns of the matrices have been cropped to make the matrices
conformable (i.e. implementing the approximation that expectations of order k > k are
redundant).

2.4. Algorithm for finding the solution.

(1) Start by making initial guesses for the 2T different versions of the matricesG (st) ,M(st)
and N(st). A good initial guess is to set them such that the dynamics of the initial
guess are equivalent to that of the full information solution.

(2) For given matrices G (st) , Gr, Gu,M(st) and N(st) compute 2T ”new” G (st) using
(2.20). (That is, one need to loop through the 2T different matrices G (st) .

(3) For given matrices Gr, Gu,M(st) and N(st) and the ”new” G (st) compute 2T ”new”
M(st) and N(st) using (2.39) and (2.40)

(4) Iterate on 2 and 3 until convergence.

To keep track of the 2T different versions of the matrices G (st) ,M(st) and N(st) it is
helpful to use the following indexing strategy. Define m × n × 2T arrays such that each
“slice” of the array correspond to the matrices G (st) ,M(st) and N(st) for a given history
st. Each unique finite history of st can be expressed as a decimal number using the mapping
between binary and decimal numbers. For example, with T = 4, the history

st = {0, 0, 0, 1} (2.41)

will thus be assigned the index number 1 since the binary number 0001 equals 1 in the
decimal system. Similarly, the history

st = {1, 1, 0, 1} (2.42)

is given the index number 13 since the binary number 1101 equals 13 in the decimal system,
and so on.1

1For instance, if only the last four periods matter for current dynamics we have 24 = 16 different endoge-
nous regimes, but if the last 8 periods matter the number of endogenous regimes is 28 = 256. The endogenous
regimes are quite similar which reduces the computational burden. Setting T = 12 which implies that there
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3. Estimating the model

The solved model can be represented in state space form as

Zt = D(st)Xt +Drrt−1 +R(st)ut (3.1)

Xt = M(st)Xt−1 +N(st)ut : ut ∼ N(0, I) (3.2)

where D(st) is a matrix that maps the state Xt into the vector Zt that contains the time
series used for estimation. The matrices M(st), N(st), D(st), Dr and R(st) are functions of
the vector of parameters Θ. The posterior distribution of the model parameters Θ and the
history of man-bites-dog indicators sT can be estimated using the Multiple-block Metropolis-
Hastings algorithm described in Chib (2001) by alternatingly sampling from the following
two blocks of parameters.

3.1. Block 1: Sampling from p
(
Θ | ZT , sT

)
. By the method of composition we can ex-

press the conditional distribution p
(
Θ | ZT , sT

)
as

p
(
Θ | ZT , sT

)
=
p
(
ZT | sT ,Θ

)
p
(
Θ | sT

)
p (ZT | sT )

(3.3)

implying the proportional relationship

p
(
Θ | ZT , sT

)
∝ p

(
ZT | sT ,Θ

)
p
(
Θ | sT

)
(3.4)

since p
(
ZT | sT

)
does not depend on Θ. The first term on the right hand side of (3.4) is the

likelihood function (defined below). The second term is proportional to p
(
sT | Θ

)
p(Θ), i.e.

p
(
Θ | sT

)
∝ p

(
sT | Θ

)
p(Θ)

where p
(
sT | Θ

)
is the pmf of T + T − 1 repeated draws from independent Bernoulli trials

with probability of success given by ω. That is,

p
(
sT | Θ

)
=

T∏
t=−T +1

p (st | ω)

= ω(
∑T

t=−T+1 st) × (1− ω)((T+T −1)−
∑T

t=−T+1 st)

where T +T − 1 is the dimension of sT . The conditional target distribution p
(
Θ | ZT , sT

)
is

thus proportional to the product of three distributions that are straightforward to evaluate
for given Θ, ZTand sT , i.e.

p
(
Θ | ZT , sT

)
∝ p

(
ZT | sT ,Θ

)
p
(
sT | Θ

)
p (Θ) (3.5)

We can then use the right hand side of the expression (3.5) to sample from p
(
Θ | ZT , sT

)
with a Metropolis step.

are 212 = 4096 different endogenous regimes result in a computational time of about 10 seconds to solve the
model once on a standard desktop PC. This can be compared to a solution time of about 0.3 seconds for
T = 5 at the posterior mode of the estimated model.
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3.2. Block 2: Sampling from p
(
sT | ZT ,Θ

)
. Similarly, to sample from p

(
sT | ZT ,Θ

)
we

will use that

p
(
sT | ZT ,Θ

)
=
p
(
ZT | sT ,Θ

)
p
(
sT | Θ

)
p (ZT | Θ)

(3.6)

implying the proportional relationship

p
(
sT | ZT ,Θ

)
∝ p

(
ZT | sT ,Θ

)
p
(
sT | Θ

)
(3.7)

Again, p
(
ZT | sT ,Θ

)
p
(
sT | Θ

)
is the product of the likelihood function and the pmf of

T +T −1 repeated draws from independent Bernoulli trials and thus also straightforward to
evaluate for given given Θ, ZTand sT . The expression (3.7) can then be use to sample from
p
(
sT | ZT ,Θ

)
by a Metropolis step.

3.3. A Multiple-Block Metropolis-Hastings Algorithm. The Multiple-Block Metropolis-
Hastings algorithm is implemented through the following steps.

(1) Specify initial values Θ0 and sT0 .
(2) Repeat for j = 1, 2, ...., J

(a) Block 1: Draw Θj from p
(
Θ | sTj−1, Z

T
)

(i) Generate the candidate parameter vector Θ∗ from qΘ (Θ∗ | Θj−1)

(ii) Calculate αΘ
j = min

{
L(ZT |sTj−1,Θ

∗)p(sT |Θ∗)p(Θ∗)qΘ(Θj−1|Θ∗)
L(ZT |sTj−1,Θj−1)p(sT |Θj−1)p(Θj−1)qΘ(Θ∗|Θj−1)

, 1

}
(iii) Set Θj = Θ∗ if U(0, 1) ≤ αΘ

j and Θj = Θj−1 otherwise.

(b) Block 2: Draw sTj from p
(
sT | Θj, Z

T
)

(i) Generate s∗T from the proposal density qS
(
s∗T | sTj−1

)
(ii) Calculate αsj = min

{
L(ZT |s∗T ,Θj)p(Θj |s∗T )qS(sTj−1|s∗T )
L(ZT |sTj−1,Θj)p(Θ∗|sTj−1)qS(s∗T |sTj−1)

, 1

}
(iii) Set sTj = s∗T if U(0, 1) ≤ αsj and sTj = sTj−1 otherwise.

(3) Return values {Θ0,Θ1,...,ΘJ} and {sT0 , sT1 ,...,sTJ }
In addition to the starting values Θ0 and sT0 we also need to choose a maximum order of

expectation k and the maximum lag T for st. It is not computationally feasible to verify that
the chosen values of these hyper parameters are large enough for each draw in the estimation
algorithm. Therefore, k and T should be chosen to ensure some redundancy. This can be
done by finding what the required k and T are for a “worst case” calibration of the model,
i.e. finding a calibration that maximizes the importance of higher order expectations and
lagged regimes and making sure that k and T are sufficiently large for those cases. The
estimates reported in the paper are based on k = 8 and T = 5.

The prior distribution p(Θ) is described in the main text. The remaining components in
the expressions in the algorithm are now described in detail.

3.4. The likelihood function. The log of the likelihood function L
(
ZT | sT ,Θ

)
can be

evaluated as

logL
(
ZT | sT ,Θ

)
= −1

2

{
T∑
t=1

2π dim(Zt) + log
∣∣Σ(st)

∣∣+ Z̃ ′tΣ(st)−1Z̃

}
(3.8)
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where Z̃t is the innovation to the observation vector Zt and defined as

Z̃t ≡ Zt − E
(
Zt | Zt−1

)
(3.9)

The innovation covariance matrix Σ(st) is defined as

Σ(st) ≡ E
(
Z̃tZ̃

′
t

)
(3.10)

The innovation Z̃t can for a given history st and parameter vector Θ be computed as the
Kalman filter innovations to the state space system made up of the measurement equation
(3.1) and the state equation (3.2).

There are four observable variables in Zt that map into aggregate variables in the the-
oretical model, but in periods when there is no man-bites-dog signal available there are
only three aggregate disturbances, i.e. the innovations to common productivity, the demand
shocks and to the interest rate rule. To avoid stochastic singularity when evaluating the
likelihood function, we treat the TFP series as well as the in CPI inflation and real GDP
growth as being measured with (very small) noise.2

3.5. The proposal density qΘ (Θ∗ | Θ). In order to make the algorithm described above
operational, we need to be specific about the proposal densities qΘ (Θ∗ | Θj−1) and qS

(
s∗T | sTj−1

)
.

Following Haario, Saksman, and Tamminen (2001), an Adaptive Random-Walk proposal
density of the form

Θ∗ ∼ N (Θj−1,Σj) (3.11)

was used to generate the candidate Θ∗. The covariance Σj is set to

Σj = c
1

j

j∑
l=1

ΘlΘ
′
l (3.12)

with the (constant) scalar c tuned to achieve an acceptance rate of approximately 22 per
cent. (To initialize the adaptive component we set a constant Σj for with diagonal elements
proportional to |Θ0| for j < 100.) Since the proposal density is symmetric, i.e. since

qΘ (Θ∗ | Θj−1) = qΘ (Θj−1 | Θ∗) (3.13)

the ratio

qΘ (Θj−1 | Θ∗)
qΘ (Θ∗ | Θj−1)

= 1 (3.14)

for all Θj−1 and Θ∗. There is thus no need to compute ratio of proposal densities in Step
2.a.ii above.

2The variances of the measurement errors are about 1/100th of the variance of the actual time series.
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3.6. The proposal density qS
(
s∗T | sT

)
. The candidate s∗T is generated so that for each

t = 1, 2, 3, ..., T the probability that s∗t 6= st,j−1 equals p∗. That is, if st,j−1 = 1 the corre-
sponding element in the candidate vector is set to 0 with probability p∗ and kept unchanged
at 1 with probability (1− p∗). If st,j−1 = 0 the corresponding element in the candidate
vector is set to 1 with probability p∗ and kept unchanged at 0 with probability (1− p∗) .This
proposal density implies that q

(
s∗T | sT

)
is a function only of the number of elements that

differ between s∗T and sT and is therefore symmetric, i.e. q
(
s∗T | sT

)
= q

(
sT | s∗T

)
. Again,

there is thus no need to compute the ratio of the proposal densities in Step 2.b.ii above. The
proposal density attached a positive probability to all possible realizations of sT and thus
satisfies a sufficient condition for convergence of the Markov chain to the target distribution
(See Theorem 4.5.5 in Geweke 2005).

I experimented with alternative proposal densities for s∗T , including generating the can-
didate s∗T independently from the previous draw (i.e. updating the second block by an
independence M-H step ) and by updating sT element by element as well as in a randomized
order. In practise, the posterior estimate of sT converges relatively rapidly compared to the
posterior estimate of Θ regardless of the choice of specification of q

(
s∗T | sT

)
. The exact

choice of proposal density thus appears to have little impact on computational efficiency in
terms of how many draws are needed to achieve convergence.
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Figure 1. The raw Markov chain for Θ from the Metropolis algorithm.

3.7. Convergence of the Markov Chain. The Metropolis algorithm above was run for 2
600 000 draws and every 100th draw was saved. The time series of each element in the raw
chain is plotted in Figure 1.
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It is clear from inspecting Figure 1 that there were some large adjustments in the mean
in the beginning of the chain. We therefore discard the first 1 000 000 draws of the Markov
chain. The time series of the individual elements of the MCMC used for the figures and
Table 1 in the paper are plotted in Figure 2 and Figure 3 plots the corresponding histograms
for each element in Θ.
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Figure 2. The segment of the Markov chain for Θ used for figures and tables
in paper.

Most parameters appear well-identified, with the only two exceptions being σξy and σζ .
The reason why it may be difficult to identify these two parameters using aggregate data is
discussed in Section 5.8 of the main paper.

An informal but useful way to judge whether the MCMC has converged is to inspect the
plots of the recursive means and variances of each element in the chain. To this end, Figure
4 contains the recursive mean of each element in the MCMC, i.e.

1

j

j∑
l=1

Θl (3.15)

for j = 1, 2, ....
Figure 5 contains the plots of the recursive sample variance of MCMC, i.e. the time series

of elements from the diagonal of the matrix

1

j

j∑
l=1

ΘlΘ
′
l (3.16)
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Figure 3. Histograms of elements in Markov chain for Θ.

for j = 1, 2, ....
In Figure 4 here are still some small adjustments in the mean of the chain even after 2 600

000 draws. However, plotting the recursive means for the last 500 000 draws in the chain as
is done in Figure 6 suggest that also the means of the chain have indeed converged. (Using
only the last 500 000 draws for the Figures in the paper does not have a material difference
for any of the results.)

In general, the Markov chain for the posterior estimate of sT converges much faster than
the Markov chain for the posterior estimate of Θ. Figure 7 displays the mean of first and
second half of the MCMC for sT .
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Figure 4. Recursive means of Markov chain for Θ.
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Figure 5. Recursive variances of Markov chain for Θ.
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Figure 6. Recursive means of Markov chain for Θ for last 500 000 draws.
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