Numerical Maximization and MLE

April 27, 2012



Numerical maximization of likelihood functions

» Grid search
> Steepest ascent

» Newton-Raphson

Based on selected parts of CH 5 of Hamilton.



The basic idea

How can we estimate parameters when we cannot maximize
likelihood analytically?

We need to

» Be be able to evaluate the likelihood function for a given set
of parameters

» Find a way to evaluate a sequence of likelihoods conditional
on difference parameter vectors so that we can feel confident
that we have found the parameter vector that maximizes the
likelihood



Example: AR(1) process

Log likelihood of AR(1) process is given by

(o) = — log(2n) — 3 log(?/ (1 - %))
1 {n [/ o)
2 o2
_r-d log(27) — -1 log(o?)

2
i —{ye — [c+ Sye1])?

t=2

l\.)\n—l



Grid Search

Divide range of parameters into grid and evaluate all possible
combinations

» The only method guaranteed to find the global optimum

Take example of AR(1) process
Xt = pXe—1+ U : © = {Pagg}

Define grid points

» p:{-1,-.95,-0.90,...,0,...,0.90,0.95,1}
» 02:{0,0.05,0.10,...2.45,2.5}

Evaluate In £(xt | ©) for all grid combinations of p and o2



Grid Search: Find the X's

15 2 25
X

1
X

X

0 05

X

p\o?
1
05

05




Grid Search in MatLab

RHO=[-1:0.05:1]; SIG2U=[0:0.05:2.5];
G=zeros(length(RHO) ,length(SIG2U))
for r=1:length(RHO)
for s=1:1length(SIG2U)
rho=RHO(r) ;
sig2u=SIG2U(s);
[L]=loglikeAR1(x,rho,sig2u)
G(r,s)=L;
end
end



Grid Search in MatLab cont’'d

function [L]=loglikeAR1(x,rho,sig2u)
T=length(x);
L=0;
p=1;
a=x(1,2:T)-rho*x(1,1:T-1);
for tt=1:T-1
L=L -.5x(p*log(2*pi)+log(det(sig2u))+...
...+a(l,tt)*inv(sig2u)*a(l,tt) ’);
end
L=L + log(1-rho"2)-log(l-rho~2)*(x(1))"2;



Surface plot of grid in MatLab

figure(1);

surf (G) ;

[C1,I1] = max(G);
[C2,I2] = max(C1);
gmax=max (max (G))
rhomax=RHO(T1(1,1))
sig2umax=SIG2U(I2)



00000

Figure: Estimated posterior densities of structural parameters



Grid search

Pros:

» With a fine enough grid, grid search always finds the global
maximum (if parameter space is bounded)

Cons:

» Computationally infeasible for models with large number of
parameters



Steepest Ascent method

A blind man climbing a mountain. How to do it:

1. Make initial guess of © = ©(0)
2. Find direction of "steepest ascent” by computing the gradient

g0y = P21
which is a vector which can be approximated element by
element
oL(Z | )
00;
L(Z16;=600 +e:j=i0; =00 otherwise) - L(Z | ©)
€

for each 0] in© = {01,02, 9_]}



Steepest Ascent method cont’d

3. Take step proportional to gradient, i.e. in the direction of
"steepest ascent” by setting new value of parameter vector as
o) = 00 4 sg(0@)

4. Repeat Steps 2 and 3 until convergence.



Steepest Ascent in MatLab

rho=.2;sig2u=1.4;
theta=[rho;sig2u;];
eps=le-3;

s=1e-3;
gr=zeros(2,1);
diff=1;

tol=1e-20;



Steepest Ascent in MatLab cont’d

while diff > tol;

for j=1:length(theta);
epsvec=zeros(2,1) ;epsvec(j)=eps;
L=loglikeAR1(x,theta(1) ,theta(2));
thetadelta=theta+teps;
Ldelta=loglikeAR1(x,thetadelta(l),thetadelta(2));
gr(j)=(Ldelta-L)/eps;

end

thetast=theta+grk*s;
diff=max (max(abs(thetast-theta)));
theta=thetast;

end



Steepest Ascent method

Pros:
» Feasible for models with a large number of parameters
Cons:

» Can be hard to calibrate even for simple models to achieve the
right rate of convergence

» Too small steps and “convergence” is achieved to soon
» Too large step and parameters may be sent off into orbit.

» Can converge on local maximum. (How could a blind man on
K2 find his way to Mt Everest?)



Newton-Raphson

Newton-Raphson is similar to steepest ascent, but also computes
the step size

> Step size depends on second derivative

» May converge faster than steepest ascent

» Requires concavity, so is less robust when shape of likelihood
function is unknown



