
THE PROJECTION THEOREM

KRISTOFFER P. NIMARK

These notes explains how orthogonal projections can be used to find least squares pre-

dictions of random variables. We start by defining some concepts needed for stating the

projection theorem. For more details about the projection theorem, see for instance Chapter

2 of Brockwell and Davis (2006) or Chapter 3 in Luenberger (1969).

Definition 1. (Inner Product Space) An real vector space H is said to be an inner product

space if for each pair of elements x and y in H there is a number 〈x, y〉 called the inner

product of x and y such that

〈x, y〉 = 〈y, x〉 (0.1)

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ H (0.2)

〈αx, y〉 = α 〈x, y〉 for all x, y ∈ H and α ∈ R (0.3)

〈x, x〉 ≥ 0 for all x ∈ H (0.4)

〈x, x〉 = 0 if and only if x = 0 (0.5)

Definition 2. (Norm) The norm of an element x of an inner product space is defined to be

‖x‖ =
√
〈x, x〉 (0.6)

Definition 3. (Cauchy Sequence) A sequence {xn, n = 1, 2, ...} of elements of an inner prod-

uct space is said to be Cauchy sequence if

‖xn − xm‖ → 0 as m,n→∞
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i.e. for every ε > 0 there exists a positive integer N(ε) such that

‖xn − xm‖ < ε as m,n > N(ε)

Definition 4. (Hilbert Space) A Hilbert space H is an inner product space which is complete,

i.e. every Cauchy sequence {xn} converges in norm to some element x ∈ H.

Theorem 1. (The Projection Theorem) If M is a closed subspace of the Hilbert Space H

and x∈ H, then

(i) there is a unique element x̂ ∈M such that

‖x− x̂‖ = inf
y∈M
‖x− y‖

and

(ii) x̂ ∈ M and ‖x− x̂‖ = infy∈M ‖x− y‖ if and only if x̂ ∈ M and (x− x̂) ∈ M⊥ where

M⊥ is the orthogonal complement to M in H.

The element x̂ is called the orthogonal projection of x onto M.

Proof. We first show that if x̂ is a minimizing vector then x− x̂ must be orthogonal to M.

Suppose to the contrary that there is an element m ∈M which is not orthogonal to the error

x− x̂. Without loss of generality we may assume that ‖m‖ = 1 and that 〈x− x̂,m〉 = δ 6= 0.

Define the vector m1 ∈M

m1 ≡ x̂+ δm (0.7)

We then have that

‖x−m1‖2 = ‖x− x̂− δm‖2 (0.8)

= ‖x− x̂‖2 − 〈x− x̂, δm〉 − 〈δm, x− x̂〉+ |δ|2 (0.9)

= ‖x− x̂‖2 − |δ|2 (0.10)

< ‖x− x̂‖2 (0.11)
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where the third line comes from the fact that 〈x− x̂, δm〉 = 〈δm, x− x̂〉 = |δ|2 when ‖m‖ =

1. The inequality on the last line follows from the fact that |δ|2 > 0. We then have a

contradiction: x̂ cannot be the element in M that minimizes the norm of the error if δ 6= 0

since ‖x−m1‖2 then is smaller than ‖x− x̂‖2 .

We now show that if x − x̂ is orthogonal to M then it is the unique minimizing vector.

For any m ∈M we have that

‖x−m‖2 = ‖x− x̂+ x̂−m‖2 (0.12)

= ‖x− x̂‖2 + ‖x̂−m‖2 (0.13)

> ‖x− x̂‖2 for x̂ 6= m (0.14)

�

Properties of Projection Mappings. Let H be a Hilbert space and and let PM be a

projection mapping onto a closed subspace M. Then

(i) each x ∈ H has a unique representation as a sum of an element in M and an element

in M⊥, i.e.

x = PMx+ (I − PM)x (0.15)

(ii) x ∈M if and only if PMx = x

(iii) x ∈M⊥ if and only if PMx = 0

(iv) M1 ⊆M2 if and only if PM2PM1x = PM1

(v) ‖x‖2 = ‖PMx‖2 + ‖(I − PM)x‖2

The definitions and the proofs above refer to Hilbert spaces in general. We now define the

space relevant for most of time series analysis.

Definition 5. (The space L2 (Ω, F, P ) ) We can define the space L2 (Ω, F, P ) as the space

consisting of all collections C of random variables X defined on the probability space (Ω, F, P )
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satisfying the condition

EX2 =

∫
Ω

X(ω)P (dω) <∞ (0.16)

and define the inner product of this space as

〈X, Y 〉 = E (XY ) for any X, Y ∈ C (0.17)

Least squares estimation via the projection theorem. The inner product space L2

satisfies all of the axioms above. Noting that the inner product definition (??) corresponds

to a covariance means that we can use the projection theorem to find the minimum variance

estimate of a vector of random variables with finite variances as a function of some other

random variables with finite variances. That is, both the information set and the variables

we are trying to predict must be elements of the relevant space and since 〈X, Y 〉 = E (XY )

implies that an estimate x̂ that minimizes the norm of the estimation error ‖x− x̂‖ also

minimizes the variance since

‖x− x̂‖ =

√
E (x− x̂) (x− x̂)′ (0.18)

To find the estimate x̂ as a linear function of y simply use that

〈x− βy, y〉 = E [(x− βy) y′] (0.19)

= 0

and solve for β

β = E (xy′) [E (yy′)]
−1

(0.20)

The advantage of this approach is that once you have made sure that the variables y and x are

in a well defined inner product space, there is no need to minimize the variance directly. The

projection theorem ensures that an estimate with orthogonal errors is the (linear) minimum

variance estimate.



THE PROJECTION THEOREM 5

Two useful properties of linear projections.

• If two random variables X and Y are Gaussian, then the projection of Y onto X

coincides withe the conditional expectation E(Y | X).

• If X and Y are not Gaussian, the linear projection of Y onto X is the minimum

variance linear prediction of Y given X.
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