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Abstract. In models where privately informed agents interact, they may need to form
higher-order expectations, i.e. expectations about other agents’ expectations. In this paper
we prove that there exists a unique equilibrium in a class of linear dynamic rational expecta-
tions models in which privately informed agents form higher order expectations. We propose
an iterative procedure that recursively computes increasing orders of expectations. The al-
gorithm is a contraction mapping, and the implied dynamics of the endogenous variables
converge to the unique equilibrium of the model. The contractive property of the algorithm
implies that, in spite of the fact that the model features an infinite regress of expectations,
the equilibrium dynamics of the model can be approximated to an arbitrary accuracy with
a finite-dimensional state. We provide explicit bounds on the approximation errors.
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1. Introduction

Many economic decisions involve predicting the actions of other agents. For instance,
firms in oligopolistic markets may need to predict how much their competitors are investing
in productive capacity and traders in financial markets may need to predict how much
other traders will pay for an asset in the future. In settings where all agents are identical
and share the same information, this becomes a trivial problem: An individual agent can
predict the behavior of other agents by introspection, since all agents will choose the same
action in equilibrium. The problem becomes more difficult, but also more realistic, if the
common information assumption is relaxed. Predicting the actions of others is then distinct
from predicting ones own actions. But since other agents face a symmetric problem, each
individual agent needs to predict other agents’ expectations about the actions of other agents,
and so on, leading to the well-known infinite regress of expectations problem, e.g. Townsend
(1983).

As first pointed out by Townsend (1983) and later emphasized by Sargent (1991), natural
state representations of dynamic models with privately informed agents tend to become
infinite-dimensional. As a consequence, little is known about the equilibrium properties of
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this type of model and no general solution method has been developed. This paper makes two
contributions towards filling these gaps. First, we prove that there exists a unique equilibrium
in a class of linear rational expectations models with privately informed agents. Second, we
propose an algorithm that can be used to approximate the equilibrium of models that feature
an infinite regress of expectations to an arbitrary accuracy with a finite-dimensional state and
explicit approximation error bounds. These results hold under quite general conditions: It is
sufficient that agents discount the future and that the exogenous processes follow stationary
(but otherwise unrestricted) VARMA processes.

The strategy we take is the following. To prove that there exists a unique equilibrium we
show that the mapping defined by the filtering and prediction problem of the agents is a
contraction on the space relevant for the endogenous processes. We then propose a procedure
that iterates on the model’s Euler equation, while recursively increasing the number of orders
of expectations that are taken into account. The proposed procedure is of the form that is
shown to be a contraction, and can thus be used to find the equilibrium dynamics of the
model.

To understand how the results described above help us overcome the infinite regress of
expectations problem, it is worthwhile describing the iterative algorithm in some detail. As a
starting point, consider agents that engage in only first order reasoning. That is, they do not
consider the effect of other agents’ expectations on the equilibrium outcome when they solve
their filtering and prediction problem. Substituting in the expectations of the naive agents
into the equilibrium conditions of the model results in a process for the endogenous variable
that depends on agents’ first order expectations about the exogenous processes. In the second
step of the algorithm, agents take the endogenous process implied by the first step as given
when they solve their filtering and prediction problem. Because that process depends on
other agents’ expectations, agents then need to engage in second order reasoning and form
expectations about other agents’ expectations. At the k-step of the iteration, agents take the
endogenous dynamics implied by k−1 order reasoning as given when they solve their filtering
and prediction problem. To form higher order expectations, it is necessary that agents are
endowed with a theory of how other agents form expectations. Here, we assume that agents
form model consistent (i.e. rational) expectations and that this is common knowledge. This
gives enough structure to compute the dynamics of the endogenous variables, while taking
into account expectations of an arbitrarily high order.1

By itself, this procedure does not solve the infinite regress of expectations problem. How-
ever, each step in the iterative procedure is associated with an implied process for the en-
dogenous variables. Because the iterative procedure is a contraction mapping on the space
relevant for the endogenous processes, these converge to the unique equilibrium of the model
as the number of iterations increase. The contractive property of the algorithm also implies
that the equilibrium dynamics of the model can be approximated to an arbitrary accuracy

1In the terminology established by Harsanyi (1967-8), common knowledge of rational expectations here
means that there is a common prior about the true state of nature and the joint probability distribution of
the true state of nature and the “types”. Different “types” are distinguishable only by the realizations of the
private signals that they have observed in the past. The common prior then endows agents with sufficient
knowledge to form model consistent expectations of the signals observed by other agents.
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with a finite-dimensional state and we provide explicit approximation error bounds as a
function of the maximum order of expectation considered.

Finite numbers can still be very large, and one may ask if these results are relevant in
practice. Using a simple asset pricing model we demonstrate numerically that the equilibrium
dynamics can be captured by a low number of orders of expectations, i.e. by a vector of
dimension in the single digits. This latter result may be reassuring to those who on grounds
of human cognitive constraints doubt that economic agents form an infinite hierarchy of
higher-order expectations, e.g. Nagel (1995).

Introducing information imperfections into dynamic macroeconomic and finance models
is not a new idea. Well-known early references include Phelps (1970), Lucas (1972, 1973,
1975), Townsend (1983), Singleton (1987) and Sargent (1991). However, recently, there has
been a renewed interest in the topic and several interesting results have emerged. First,
private information about quantities of common interest to all agents have been shown to
introduce inertia and sluggishness of endogenous variables in settings with strategic com-
plementarities, e.g. Woodford (2002), Morris and Shin (2006), Nimark (2008), Mackowiak
and Wiederholt (2009) and Angeletos and La’O (2009). Second, noisy public signals can
provide a plausible theory of observed co-movement of aggregate variables as in Lorenzoni
(2009). Third, private information may also have normative policy implications as shown by
Angeletos and Pavan (2007), Lorenzoni (2010) and Paciello and Wiederholt (2013). Fourth,
in financial markets, private information may introduce speculative behavior akin to the
“beauty contest” metaphor of Keynes (1936), e.g. Allen, Morris and Shin (2006), Bacchetta
and van Wincoop (2006), Grisse (2009), Cespa and Vives (2012), Kasa, Walker and White-
man (2014), Rondina and Walker (2014) and Barillas and Nimark (2016a, 2016b). In spite
of the renewed interest, no general solution methodology with known properties has emerged
for solving this class of models. In the absence of a general solution method, existing ap-
proaches have imposed additional restrictions to simplify the prediction problem faced by
agents. To understand the contribution of the present paper it is worthwhile to spell out
these assumptions explicitly.

The first approach used to solve dynamic models with private information exploited the
idea that if private information is short-lived, it is often possible to avoid modeling higher-
order expectations explicitly as state variables. Lucas (1972,1975) achieved this by assuming
that agents pool their information between periods. More recently, Allen, Morris and Shin
(2006), Cespa and Vives (2012) or Banerjee, Kaniel and Kremer (2009) analyze finite horizon
models in which agents use non-recursive methods to predict endogenous variables directly
by conditioning on a finite history of signals. Another way to make private information
short-lived is to assume that all shocks are observed perfectly by all agents with a lag. This
assumption was first introduced by Townsend (1983) as a way to restrict the dimension of
the relevant state for ‘forecasting the forecasts of others’. Optimal forecast of any variable
of interest can then be constructed using projections onto the perfectly revealed state and a
finite-dimensional vector of private signals. Variations of this method has also been used by
Singleton (1987), Hellwig (2002), Lorenzoni (2009) and Hellwig and Venkateswaran (2009).

In models where agents do not face any intertemporal optimality conditions, it is often
possible to simplify the state. For instance, Woodford (2002) solves a model in which agents
face a dynamic filtering problem, but where the decision problem is static. The endogenous



4 KRISTOFFER P. NIMARK

variable in Woodford’s model is a function of a geometric average of higher-order expecta-
tions about the current fundamental. In this set-up, Woodford is able to derive an exact
solution to his model as a function of a two-dimensional state. Huo and Takayama (2015a)
propose an alternative way to solve a model of the same static decision form as Woodford’s.
Their method is exact when agents observe only exogenous signals with finite order ARMA
representations.2

Kasa, Walker and Whiteman (2014) solve a model that, like the class of models analyzed in
the present paper, features a dynamic equilibrium condition in the form of an Euler equation.
They solve directly for the MA representation of the equilibrium dynamics of their model
by imposing that the equilibrium representation is non-invertible. This method is further
developed in Rondina and Walker (2014). Solving directly for the equilibrium as a function
of the white noise innovations of the model is elegant, but requires restrictive assumptions on
the ARMA structure of the observed variables. To solve their model, Rondina and Walker
require the endogenous variable to follow a low order ARMA process that admits both an
invertible and non-invertible representation.3 Huo and Takayama (2015b) solve a dynamic
RBC model with capital accumulation, but their solution method is not applicable to models
in which agents observe signals that are functions of endogenous variables.

In contrast to existing approaches, the method proposed here allows for the exogenous pro-
cesses to follow any stationary VARMA process and agents that observe both endogenous
and exogenous signals. It is also applicable to models with multiple endogenous variables.
The approach has several advantages. First, since fewer modeling compromises are needed,
the method allows us to solve empirically more plausible models that more closely resem-
bles the full information models in the quantitative macroeconomics and finance literature.
Second, the solution method is both flexible enough and computationally fast enough to use
for likelihood based estimation as demonstrated by Melosi (2016) and Nimark (2014), who
solve and estimate business cycles models with privately informed agents, and by the em-
pirical asset pricing papers by Barillas and Nimark (2016a, 2016b) and Struby (2016). The
method thus makes it feasible to empirically quantify the importance of private information
and provides a bridge between the large theoretical literature and the data. Third, model-
ing higher-order expectations as state variables helps intuition and makes the link between
private information and the dynamics of the endogenous variables transparent. Fourth, the
method relies on standard tools used in macroeconomics and time series, requiring no more
than basic proficiency with the Kalman filter.

The next section presents an asset pricing model with privately informed agents. While
simple, the model serves as an archetype to illustrate the complications that arise from the
infinite regress of expectations and how these can be overcome by the proposed method.
Section 3 presents an algorithm that iterates on the model’s Euler equation while recursively
increasing the number of orders of expectations considered. In Section 4 we prove that there

2To solve their static decision model with endogenous signals, Huo and Takayama (2015a) rely on an ad
hoc approximation method with unknown properties.

3To date, Rondina and Walker’s (2014) method has only been applied to models featuring a single en-
dogenous variable and where an agent’s private signal is a sum of two transitory shocks rather than a noisy
measure of a persistent process. However, it is not clear that these are fundamental restrictions implied by
their approach.
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exists a unique solution to the model. There, we also show that the proposed algorithm is a
contraction that converges to the unique solution of the model, and that the equilibrium dy-
namics can be approximated to an arbitrary accuracy by a finite-dimensional state. Section
5 illustrates how the solution method can be used in practice by solving the simple asset
pricing model. Section 6 contains the main theorem of the paper that extends the results of
Section 4 to a more general class of models. Section 7 concludes.

2. An Archetypal Dynamic Model

In this section we present a simple asset pricing model populated with privately informed
agents. It is arguably the simplest dynamic set-up in which the infinite regress of expectations
arises, and we will use it to illustrate the proposed solution method. The results derived
using the simple model are extended to a more general class of models in Section 6.

2.1. A simple dynamic model structure. The model is a simplified version of Singleton’s
(1987) CARA utility overlapping generations asset pricing model. As in Singleton (1987),
agents observe a private signal that is useful for predicting future asset prices. However, we
relax Singleton’s assumption that all shocks are revealed perfectly with a two period lag and
instead assume that the shocks are never revealed. Time is discrete and indexed by t and
there is a continuum of agents indexed by j ∈ (0, 1). The equilibrium price of the asset is
determined by an Euler equation of the form

pt = β

∫
E [pt+1 | Ωt,j] dj − (θt + εt) : εt ∼ N

(
0, σ2

ε

)
(2.1)

where Ωt,j is the information set of agent j and 0 ≤ β < 1. Asset supply is stochastic and
given by the sum of the transitory shock εt and the persistent component θt that follows

θt = ρθt−1 + ut : ut ∼ N
(
0, σ2

u

)
(2.2)

where 0 ≤ |ρ| < 1. Agent j observes the signal vector st,j

st,j ≡
[
zt,j
pt

]
(2.3)

where zt,j is a noisy private signal about the exogenous fundamental θt of the form

zt,j = θt + ηt,j : ηt,j ∼ N
(
0, σ2

η

)
. (2.4)

Solving the model requires expressing the average expectations term
∫
E [pt+1 | Ωt,j] dj in the

Euler equation (2.1) as a function of the exogenous processes. When forming expectations,
agents’ condition on the history of both the price pt and the private signal zt,j. Agent j’s
information set is thus defined by the filtration Ωt,j ∈ {zt,j, pt,Ωt−1,j} . Because pt depends
on both θt and εt, agents will in general not be able to back out θt and εt perfectly from
observing pt. The private signal zt,j is then useful for predicting the next period price pt+1.
To understand the implications of introducing private information in this setting, it is useful
to first show how the model can be solved under full information.
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2.2. The full information solution. If all agents observe θt directly so that θt ∈ Ωj
t for

all j, the Euler equation (2.1) can be used to recursively substitute out expectations about
pt+1, pt+2,... The price can then be expressed as a discounted sum of expected future values
of θt

pt =
∞∑
k=0

βkE (θt+k | θt) + εt. (2.5)

For any random variable X, the law of iterated expectations states that

E (E [X | Ω′] | Ω) = E (X | Ω) (2.6)

if and only if Ω ⊆ Ω′. Under full information, we can use that the common information set
Ωt is defined by the filtration

Ωt = {θt,Ωt−1} (2.7)

so that Ωt ⊆ Ωt+k for all k ≥ 0. The law of iterated expectations (2.6) together with (2.2)
thus implies that

θt+k = ρkθt. (2.8)

The infinite sum (2.5) can then be simplified to

pt =
1

1− βρ
θt + εt (2.9)

if |βρ| < 1.

2.3. Private information and a complication. We want to solve the model above with-
out imposing that all agents have access to the same information. With privately informed
agents, we can still substitute (2.1) forward. After the first step we get

pt = εt + θt + β

∫
E
[
θt+1 | Ωj

t

]
dj + β2

∫
E

[∫
E
[
pt+2 | Ωj′

t+1

]
dj′ | Ωj

t

]
dj. (2.10)

The price now depends on the exogenous supply shocks εt and θt, the average expectation
in period t of θt+1 but also on higher-order expectations. The last term on the right hand
side of (2.10) is the average expectation in period t of the average expectation in period t+1
of the price in period t + 2. Continued recursive substitution of (2.1) gives the price as a
discounted sum of higher-order expectations about future values of θt

pt = εt + θt + β

∫
E
[
θt+1 | Ωj

t

]
dj + β2

∫
E

[∫
E
[
θt+2 | Ωj′

t+1

]
dj′ | Ωj

t

]
dj + ...

...+ βk
∫
E

[
· · ·
∫
E
[
θt+k | Ωj′′

t+k−1

]
dj′′ · · · | Ωj

t

]
dj + ... : k →∞ (2.11)

That is, pt depends on the average expectation in period t of θt+1, the average expectation
in period t of the average expectation in period t + 1 of θt+2, and the average expectation
in period t of the average expectation in period t+ 1, and so on, of the average expectations
in period t + k − 1 of θt+k, with k tending to infinity. It is the fact that the price depends
on these higher-order expectations that makes standard solution methods inapplicable.

As has been noted before, e.g. Allen, Morris and Shin (2006), higher-order expectations
generally differ from average first order expectations. Formally, it is because the current
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information set of an agent is not nested in the future information sets of other agents
that makes the law of iterated expectations (2.6) inapplicable to compute the higher-order
expectation in (2.11). To see why this matters, note that the law of iterated expectations can
be interpreted as a consequence of an agent’s inability to predict their own forecast errors.
Their expectation about their future expectations about θt+k must then coincide with their
current expectations about θt+k.

The same is not true about expectations about other agents’ expectations. Because indi-
vidual agents observe private signals, they can systematically predict the future forecasting
errors of other agents. By definition, an individual agents’ prediction about other agents’
forecasting error is simply the difference between his first and second order expectation.
That individual agents can predict other agents’ forecasting errors is thus equivalent to the
statement that first and second order expectations do not coincide. A similar argument
can be applied to higher-order expectations. Because different orders of expectations about
future values of θt do not generally coincide, we cannot reduce the discounted sum in (2.11)
to a function of a single period t state variable.

2.4. Signal extraction from endogenous variables with private information. An
alternative to computing the higher-order expectations about θt+k in (2.11) is to let agents
directly predict the next period price and then take the average across agents. If the indi-
vidual agents’ expectations are rational given their information sets, this approach will yield
a solution to the model. A “brute force” approach to this problem would be to project the
next period price onto the entire history of signals observed by the agents. However, this
would imply conditioning on a vector of signals with an ever-increasing dimension as time
passes, which is impractical.

As described by both Townsend (1983) and Sargent (1991), a natural alternative is to write
down the prediction problem recursively, letting agents update only to the new information
that arrives in period t using the Kalman filter. However, an agent that wants to use
the information contained in an endogenous variable to extract information about a latent
state variable of common interest will need to include an infinite number of higher-order
expectations as state variables. The logic of their argument in the context of the model
(2.1)-(2.4) is as follows.

Consider an agent that wants to form an expectation about the next periods price pt+1.
He clearly needs to form an expectation about θt+1 which by (2.2) depends in the current
value of θt. The agent can observe the current price pt, and because the price depends on
θt, the agent would like to extract information about θt from pt. But since the price also
depends on the average expectations of other agents, who are solving the same filtering
and prediction problem, the price pt will depend not only on θt but also on the average
expectation about θt. Our agent thus needs to include the average expectation about θt in
his state to effectively extract the information from pt. But again, since the agent knows
that all other agents face the exact same problem, the price will then depend on the average
expectation of the average expectation about θt, and the agent then needs to include also
the average expectation of the average expectation in his state to effectively extract the
information from pt. This recursion never ends, and natural recursive state representations
in this kind of set-up thus tend to be infinite-dimensional as higher and higher orders of
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expectations need to be considered. It was this fact that made Townsend (1983) look for
representation that did not explicitly include higher-order expectations. Instead, Townsend
assumed that the latent state is revealed perfectly with a lag. We would like to be able to
solve the this type of model without assuming that the state is ever perfectly revealed.

2.5. The strategy. Our strategy to overcome the infinite regress of expectations problem is
as follows. First, we present a recursive algorithm that iterates on the Euler equation (2.1).
The algorithm follows the logic described in the previous paragraph closely and incrementally
adds one order of expectation at each step in the iteration. If the paper ended there, not
much would have been achieved, as the dimension of the state would grow arbitrarily large.
However, we then prove that there exists a unique equilibrium of the model described by
(2.1)-(2.4) and that the algorithm presented in the next section converges to this equilibrium.
The contractive property of the algorithm also implies that the equilibrium dynamics can
be approximated arbitrarily well with a finite-dimensional state.

3. Recursively computing higher-order expectations

This section presents an algorithm that iterates on the Euler equation (2.1) while incremen-
tally increasing the number of orders of expectations included in the model’s representation.
One way to think of the algorithm is as starting from the filtering and prediction problem
of a “naive” agent who, in the language of Nagel (1995), only engage in “first order reason-
ing”. That is, the naive agent solves his filtering and prediction problem without taking into
account other agents’ expectations. Substituting the cross-sectional average expectation of
similarly naive agents into the Euler equation (2.1) yields a price function that depends only
on the exogenous variables and average first order expectations. In the next step, we let
agents take this price function as given and thus take into account that other agents’ first
order expectations affect the price that they observe. In the second step, agents then engage
in second order reasoning when they solve their filtering and prediction problem. Extend-
ing this argument, in the kth iteration agents engage in k order reasoning. The algorithm
thus closely follows the logic used by Townsend (1983) and Sargent (1991) to illustrate the
intractability of the infinite regress of expectations. Here we use the same logic to compute
the price process taking into account an arbitrarily large number of orders of expectations.

3.1. Notation and definitions. We denote agent j’s first order expectation of θt condi-
tional on his period t information set Ωt,j as

θ
(1)
t,j ≡ E [θt | Ωt,j] . (3.1)

The average first order expectation θ
(1)
t is obtained by taking averages of (3.1) across agents

so that

θ
(1)
t ≡

∫
E [θt | Ωt,j] dj. (3.2)

The kth order expectation of θt is defined recursively as

θ
(k)
t ≡

∫
E
[
θ

(k−1)
t | Ωt,j

]
dj (3.3)
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where we used the convention that the zero order expectation of θt is the actual value of the
variable so that

θ
(0)
t ≡ θt. (3.4)

Full information rational expectations implies that the variable θt is common knowledge so

that θt = θ
(k)
t : k = 1, 2, ... for all t. We refer to a sequence of expectations, for instance from

order zero to k, as a hierarchy of expectations from order zero to k. Vectors consisting of a

hierarchy of expectations are denoted θ
(0:k)
t and defined as

θ
(0:k)
t ≡

[
θ

(0)
t θ

(1)
t ... θ

(k)
t

]′
. (3.5)

3.2. Filtering and prediction with first order reasoning. To solve the model, we need
to find the equilibrium cross-sectional average prediction of pt+1 in (2.1). As a starting point,
consider the prediction problem of an agent that understands that the price is affected by
θt + εt, but is naive in the sense that he does not understand that the current price is also
affected by the expectations of others. The agent thus believes that the price follows

p0
t = −θt − εt (3.6)

where the zero superscript indicates that the prices process only depends on the actual, i.e.
zero order expectations of θt. Since θt follows an autoregressive process, in order to predict
p0
t+1, the agent thus needs to form an expectation about θt. Given the linear structure and

Gaussian shocks, agent j’s optimal expectation of θt,j conditional on the history of observed
signals st,j is given by the Kalman filter update equation

θ
(1)
t,j = ρθ

(1)
t−1,j +K0

[
st,j − L0ρθ

(1)
t−1,j

]
(3.7)

associated with the state space system

θt = ρθt−1 + ut (3.8)

st,j = D0θt + e1ηt,j + e2εt (3.9)

where D0 =
[

1 −1
]′

, K0 is the Kalman gain and en is a conformable vector with a 1 in

the nth position and zeros elsewhere.

3.2.1. Finding the average first order expectation. To find the average expectation, use that∫
ηt,jdj = 0 to integrate the signal vector (3.9) in (3.7) across agents. Combine the resulting

expression with the true law of motion for θt and rearrange to get the law of motion for the
hierarchy of expectation from order 0 to 1 as[

θt
θ

(1)
t

]
=

[
ρ 0

K0D0ρ (I −K0D0) ρ

] [
θt−1

θ
(1)
t−1

]
+

[
1 0

K0D0 K0

] [
ut
εt

]
(3.10)

or more compactly

θ
(0:1)
t = M1θ

(0:1)
t−1 +N1wt : wt ∼ N (0, I) . (3.11)
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Given the price process p0
t , the average expectation of the price in the next period can then

be computed as ∫
E
[
p0
t+1 | Ω0

t,j

]
dj = −

∫
E
[
θt+1 | Ω0

t,j

]
dj (3.12)

= −ρθ(1)
t (3.13)

where the superscript on Ω0
t,j denotes that Ω0

t,j =
{
p0
t , zt,j,Ω

0
t−1,j

}
.

3.2.2. The price process with first order reasoning. To find the price implied by first order
reasoning, substitute the average expectation (3.13) into the Euler equation (2.1) to get the
new price process p1

t as

p1
t = g′1θ

(0:1)
t − εt (3.14)

where
g′1 = −

[
1 βρ

]
. (3.15)

The law of motion (3.10) for θ
(0:1)
t together with the new measurement equation

st,j = D1θ
(0:1)
t + e1ηt,j + e2εt (3.16)

where

D1 =

[
e′1
g′1

]
(3.17)

then defines a new state space system.
We can now see the beginning of the infinite regress problem described by Townsend

(1983) and Sargent (1991). Because the average expectation θ
(1)
t is now part of the state

that determines the price p1
t , in order to use the information in the signal vector (3.16), agent

j need to form an expectation about the average expectation of other agents.

3.3. Recursively finding higher-order expectations. Above, we derived the average
expectation of agents that engage in first order reasoning taking the exogenous processes as
given. The same steps can be used to describe the filtering and prediction problem faced by
an agent that engages in k + 1 order reasoning, taking the price process implied by k order
reasoning as given. This strategy allows us to recursively compute the price process and the
law of motion of the expectations hierarchy for arbitrarily high orders of expectations.

3.3.1. The filtering problem. Consider the problem of estimating the state θ
(0:k)
t conditional

on the history of the price pkt
pkt = g′kθ

(0:k)
t − εt (3.18)

and the private signal zt,j. Agent j’s optimal estimate of the hierarchy θ
(0:k)
t , that is, agent

j’s expectations from order 1 to k + 1, is given by the Kalman update equation

θ
(1:k+1)
t,j = Mkθ

(1:k+1)
t−1,j +Kk

[
st,j −DkMkθ

(1:k+1)
t−1,j

]
(3.19)

where Kk is the Kalman gain associated with the state space system

θ
(0:k)
t = Mkθ

(0:k)
t−1 +Nkwt : wt ∼ N (0, I) (3.20)

st,j = Dkθ
(0:k)
t +Rwwt +Rηwt,j : wt,j ∼ N (0, 1) . (3.21)
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The matrices Dk, Rw and Rη in the measurement equation (3.21) are defined as

Dk =

[
e′1
g′k

]
, Rw =

[
0 0
0 σε

]
, Rη =

[
ση
0

]
. (3.22)

The Kalman gain Kk can be computed using standard formulas reproduced in the Appendix.

3.3.2. The new law motion for the hierarchy of average expectations. To find the law of
motion for the average expectations from order 1 to k + 1, take the cross-sectional average
of the signal vector st,j and substitute into (3.19) to get

θ
(1:k+1)
t = (I −KkDk)Mkθ

(1:k+1)
t−1 +KkDkMkθ

(0:k+1)
t−1 + (KkDkNk +KkRw) wt. (3.23)

By amending this expression to the law of motion (2.2) of the actual process θt we get the
law of motion for the hierarchy of average expectations from order zero to k + 1 as[

θt
θ

(1:k+1)
t

]
= Mk+1

[
θt−1

θ
(1:k+1)
t−1

]
+Nk+1wt (3.24)

where the matrices Mk+1 and Nk+1 are given by

Mk+1 =

[
ρ 01×k

0k×1 0k×k

]
+

[
01×k 0

KkDkMk 0k×1

]
+

[
0 01×k

0k×1 (I −KkDk)Mk

]
(3.25)

Nk+1 =

[
σve

′
1

(KkDkNk +KkRw)

]
. (3.26)

Taking a state space system of the form (3.18)-(3.21) with k orders of expectations as given,
we can thus use the steps (3.22)-(3.26) to compute the law of motion of the state with k+ 1
orders of expectations.

3.3.3. The higher-order expectations operator. To complete a full step of the recursion, we
also need to find the new price function pk+1

t that depends on k + 1 orders of expectations.
To do so, it is useful to define the higher-order expectations operator Hk : Rk+1 → Rk as

θ
(1:k)
t = Hkθ

(0:k)
t . (3.27)

That is, the operator H applied to a hierarchy of expectations moves the hierarchy one step
up in orders of expectations by annihilating the first element in the hierarchy.4 It is given
by the matrix

Hk ≡
[

0k×1 Ik
]
. (3.28)

4Allen, Morris and Shin (2006) defines an average belief operator E : R2 → R2. The operator E maps the
average k order expectations of the average signal vector into k+1 order expectations of the same vector and
can be used to compute higher order expectations of the state since the static setting results in a proportional
relationship between higher order beliefs. In our model, the elements of Nk+1 in the law of motion (3.24)
could be generated by a similar operator if θt was a non-persistent process.
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3.3.4. The new price function. Multiplying a hierarchy of expectations by MkHk+1 moves
the hierarchy one step up in orders of expectations and one step forward in time. The average
expectation in period t of the price in period t+ 1 can then be computed as∫

E
[
pkt+1 | Ωk

t,j

]
dj = g′kMkHk+1θ

(0:k+1)
t . (3.29)

Substituting this average expectation into the Euler equation (2.1) then gives the k+1 order
price process as

pk+1
t = βg′kMkHk+1θ

(0:k+1)
t − θt − εt. (3.30)

The new price function can thus be expressed as

pk+1
t = g′k+1θ

(0:k+1)
t − εt (3.31)

where

g′k+1 = e′1 + βg′kMkHk+1. (3.32)

The steps above define an algorithm that takes the price process (3.18)-(3.20) with k
orders of expectations as an input and produces a new price process given by (3.24)-(3.30)
with k + 1 orders of expectations as an output.

4. Existence, Uniqueness and Approximation Error Bounds

The previous section derived a recursive algorithm that can be used to compute the law

of motion for the hierarchy of expectations θ
(0:k)
t and the associated price function pkt for

an arbitrarily large k. By itself, this algorithm thus does not solve the infinite regress
problem. However, in this section we first show that there exists a unique solution to the
model by proving that the mapping implied by the agents’ filtering and prediction problem
is a contraction. The recursive algorithm above is then shown to be a special case of this
mapping. As a consequence, the sequence of price processes pkt : k = 0, 1, 2, ... converges to
the unique equilibrium of the model as k increases. From the contractive property of the
algorithm, it also follows that any desired degree of solution accuracy can be achieved with a
finite-dimensional state representation and we present explicit bounds on the approximation
errors.

The structure of the formal results below is as follows. We first define the relevant space
of analysis and then prove two intermediate lemmas. The first lemma formally defines the
mapping implied by the Euler equation (2.1) and we prove that it is a self-map on the
relevant Hilbert space. This mapping takes a given process for the price and maps that into
a new price process by solving the agents’ filtering and prediction problem, taking the initial
price process as given. To show that it is a contraction mapping requires us to compare the
distance between two arbitrary price processes with the distance of the price processes after
applying the mapping. The second lemma facilitates this step by showing how the average
expectations in the Euler equation (2.1) can be rewritten to make these distances easy to
compute and compare.

It is helpful to have a notation that makes a distinction between particular realizations of
a time series process and the time series process itself. We will use x ≡ {xt}∞t=−∞ to denote
the time series process, and xt to denote the realized value of x in period t. The relevant
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space for the analysis is L2, i.e. the space of all random processes with a finite variance,
which we now define.

Definition 1. (The space L2) The real Hilbert space L2 is the collection of all random
variables x with finite variance

Ex2 <∞ (4.1)

endowed with the inner-product

〈x, y〉 ≡ E (xy) : x, y ∈ L2 (4.2)

and induced norm

‖x‖ =
√
〈x, x〉. (4.3)

The space L2 is a well-understood Hilbert space commonly used to study time series
processes, see for instance Brockwell and Davis (2006). The norm (4.3) implies that the
distance between two elements x and y in L2 is the standard deviation of the difference
xt − yt. Two processes are equivalent if they are equal almost surely.

Proposition 1 below establishes that the recursive algorithm to compute the sequence of
price processes p0, p1, ..., pk, while increasing the number of orders of expectations that is
taken into account, is a contraction mapping. As an intermediate step towards this end, we
first show that mapping implied by the algorithm is a self-map on L2.

Lemma 1. (The mapping T : L2 → L2) For the time series process x ∈ L2, define the
mapping T of x as

Tx ≡ β

∫
E
[
xt+1 | Ωx

t,j

]
dj + θt + εt. (4.4)

where Ωx
t,j ≡

{
xt, zt,j,Ω

x
t−1,j

}
. Then T is a self-map on L2 so that x ∈ L2 implies that

Tx ∈ L2.

Proof. In the Appendix. �

Note that the mapping from pk to pk+1, defined by the steps from (3.18) to (3.30) is of the
same form as T . It takes the price process defined by (3.18) and (3.20) as given, then solves
the implied filtering and prediction problem of an agent to compute the average expectation
(3.29). Substituting this average expectation into (2.1) then corresponds to the operation
(4.4) performed by T , resulting in the new price process given by (3.24) and (3.30).

The space L2 is closed under addition, so the proof of Lemma 1 simply entails showing that
the variance of the average period t expectation of xt+1 is finite if x ∈ L2. The initial price
process p0, as defined by (3.6), has a finite variance and thus belongs to L2. By the principle
of induction, Lemma 1 then holds for each step k of the algorithm so that pk+1 = Tpk ∈ L2

for every k.
The main result of this section is to demonstrate that the sequence of price processes

pk : k = 0, 1, 2, ... converges to the unique equilibrium of the model (2.1)-(2.4) by showing
that T is a contraction on L2. To do so, it is helpful to first rewrite the average expectation in
(4.4) in an equivalent form that simplifies computing the distance ‖Tx− Ty‖ for x, y ∈ L2.
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Lemma 2. (MA representation of the average expectation) The average expectation
∫
E
[
xt+1 | Ωx

t,j

]
dj

can be written as ∫
E
[
xt+1 | Ωx

t,j

]
dj = e′2

[
L−1Cx(L)

]
+

wt (4.5)

where Cx(L) is a lag polynomial and [ ]+ is the annihilation operator that sets all negative
powers of L to zero.

Proof. From the Wold Decomposition Theorem (e.g. Brockwell and Davis 2006), we can
write the process for agent j’s signal vector st,j as

st,j = Ax(L)s̃t,j (4.6)

where Ax(L) is a causal lag polynomial in the white noise process s̃t,j. The white noise
process s̃t,j is defined as the innovation to agent j’s signal vector

s̃t,j ≡ st,j − E [st,j | st−1,j, st−2,j, ...] . (4.7)

Because s̃t,j ∈ Ωx
t,j, we can use the Wiener-Kolmogorov prediction formula (e.g. Hansen and

Sargent 1981) to write agent j’s expectation about the next period signal vector as

E
[
st+1,j | Ωx

t,j

]
=
[
L−1Ax(L)

]
+

s̃t,j. (4.8)

To find agent j’s expectation of xt+1, use that xt is a component of st,j so that

E
[
xt+1 | Ωx

t,j

]
= e′2

[
L−1Ax(L)

]
+

s̃t,j. (4.9)

The last step to get the desired form (4.5) is to note that by (3.9) the innovation to the
average signal vector can be written in the form∫

s̃t,jdj = Bx(L)wt. (4.10)

Integrating (4.9) over j and substituting in (4.10) for
∫

s̃t,jdj in (4.9) and defining

Cx(L) ≡ Ax(L)Bx(L) (4.11)

gives the desired expression.5,6 �

We now have the components needed to prove that the mapping T is a contraction, which
is the main proposition of this section.

5While not needed for the proof, we can compute the coefficients in both A(L) and B(L) explicitly
from the definition (3.21) of the signal vector and the Kalman filter update equation (3.19) so that zt,j =
z̃t,j + LΣ∞s=1M

sKz̃t−s,j and
∫
z̃t,jdj = (LN +R)wt + LΣ∞s=1M

s (N −KLN −KR)wt−s.
6The lag polynomial A(L) is invertible by construction, but C(L) is not invertible unless agents’ signals are

perfectly revealing. Rondina and Walker (2014) propose a method that solves directly for the non-invertible
MA representation of the endogenous variable. They specify their exogenous processes so that it is possible
to “flip” what corresponds to A(L) in their model into an observationally equivalent, but non-invertible MA
representation. This non-invertible representation then corresponds to C(L) here. However, their technique
requires restrictive assumptions on the functional form of A(L). For instance, it cannot be used to solve a
model such as (2.1)-(2.4) in which agents observe private signals about an AR(1) process.
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Proposition 1. (T is a contraction) The mapping T is a contraction with contractive con-
stant 0 ≤ β < 1.

Proof. For any x, y ∈ L2, we need to show that

‖Tx− Ty‖ ≤ β ‖x− y‖ . (4.12)

We start by finding the distance ‖x− y‖ .
Using Wold’s theorem as in Lemma 2, we can write x and y in MA form as

xt = e′2Cx(L)wt, yt = e′2Cy(L)wt.

or more explicitly as

xt = e′2
∑

Cx,swt−s, yt = e′2
∑

Cy,swt−s.

The distance ‖x− y‖ induced by the norm (4.3) is the standard deviation of xt − yt. Since
Ewtw

′
t = I and Ewtw

′
t−s = 0 for s 6= 0, it can be computed as

‖x− y‖ =

√√√√ ∞∑
s=0

(c2,1,x,s − c2,1,y,s)
2 +

∞∑
s=0

(c2,2,x,s − c2,2,y,s)
2 (4.13)

where ci,j,x,s and ci,j,y,s are the i, j element of Cx,s and Cy,s respectively.
The compare the distance ‖Tx− Ty‖ with β ‖x− y‖, use that we can express as ‖Tx− Ty‖

as

‖Tx− Ty‖ = |β|
∥∥∥e′2 [L−1Cx(L)

]
+

wt − e′2
[
L−1Cy(L)

]
+

wt

∥∥∥ (4.14)

= |β|

√√√√ ∞∑
s=1

(c2,1,x,s − c2,1,y,s)
2 +

∞∑
s=1

(c2,2,x,s − c2,2,y,s)
2 (4.15)

≤ β ‖x− y‖ . (4.16)

The first equality follows from combining the definition (4.4) of T with Lemma 2. The
second equality follows from the definition of the norm. The last inequality, which concludes
the proof, follows from the fact that Wiener-Kolmogorov prediction formula [L−1C(L)]+
annihilates the first term in the expansion of C(L). The sums in (4.15) thus contain one
non-negative term less than the sums in (4.13). �

The fact that T is a contraction has several useful implications that we summarize in the
following corollaries.

Corollary 1. (T has a unique fixed point) There exists a unique p∗ ∈ L2 such that

p∗ = Tp∗. (4.17)

That T has a unique fixed point follows from standard results about contractive maps, see
for instance Kreyszig (1978) or Atkinson and Han (2005). Note that the proof of Proposition
1 allows x and y to be any stationary linear time series process with Gaussian shocks. The
proof thus do not rely on the particular recursive representation of the state proposed here.
The fixed point of T is the unique equilibrium of the model when agents condition on the
entire history of st,j, regardless of how this equilibrium is represented.
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Proposition 1 implies that the price process pk will converge to the unique fixed point p∗

as k increases. Because T is a contraction mapping with contractive constant β, we can
derive explicit bounds on the approximation errors pk − p∗ as a function of the number of
iterations k.

Corollary 2. (Convergence and error bounds) For any p0 ∈ L2, the sequence
{
pk
}∞
k=0

defined

by pk+1 = Tpk converges to p∗ ∈ L2 and the following bounds are valid∥∥pk − p∗∥∥ ≤ βk

1− β
∥∥p0 − p1

∥∥ (4.18)∥∥pk − p∗∥∥ ≤ β

1− β
∥∥pk−1 − pk

∥∥ (4.19)

Again, the proof follows from standard results about contractive maps. The contractive
property of T implies that

{
pk
}∞
k=0

is a Cauchy sequence. From the completeness of L2 it then

follows that p∗ ∈ L2, i.e. that the equilibrium price has finite variance. Because ‖p0 − p1‖ is
finite and |β| < 1, the bound (4.18) implies that for any desired degree of precision δ > 0,
there exists a finite k such that ∥∥pk − p∗∥∥ < δ. (4.20)

After computing the first iteration on T , the bound (4.18) can be used to compute how
many iterations are needed in total for the approximation error to be smaller than δ. The
inequality (4.19) can be used to bound the error after having computed k iterations.

4.1. A finite-dimensional approximation. In the kth iteration, the dimension of the
state is k + 1. From the bound (4.18) it follows that for any desired accuracy, we can ap-
proximate the equilibrium dynamics with a finite-dimensional state. This is useful, since
previous results have suggested that there may be no exact finite-dimensional state repre-
sentation of the equilibrium dynamics in models where privately informed agents extract
information from endogenous variables. For instance, Makarov and Rytchkov (2012) shows
that the equilibrium dynamics of a dynamic asset pricing model with two groups of privately
informed traders cannot be represented by a finite order ARMA process. Huo and Takayama
(2015a) prove a no-finite-order-ARMA-representation-with-endogenous-signals result in the
same spirit as that of Makarov and Rytchkov’s in the context of static decision model with
a continuum of privately informed agents. That we can show here that a unique equilibrium
exists and that it can be approximated arbitrarily well with a finite-dimensional state is thus
an important result from a practical perspective since in many settings it is natural to assume
that agents can observe some endogenous variables.7 In the next section we demonstrate
how to apply the solution method proposed here in practice and in Section 6 we generalize
the results to a class of models that allow for multiple endogenous variables and stationary,
but otherwise unrestricted, VARMA processes for the exogenous variables.

7Huo and Takayama (2015a) conjecture that the equilibrium dynamics of their model with endogenous
signals can be approximated with a finite order ARMA process. However, they do not provide a proof of
this conjecture.
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5. Solving the asset pricing model

In this section we illustrate how the solution method works in practice by applying it
to the model used in the analysis above. To do so, we first need to choose values for the
parameters of the model. In the benchmark parameterization, we set {β, ρ, σv, σε, ση} =
{0.95, 0.9, 0.05, 1, 0.1}. We also need to decide how many iterations on the algorithm that
are required to achieve a satisfactory accuracy of the solution. How small the approximation
errors should be for the solution to be considered sufficiently accurate will generally depend
on the application in question. For illustrative purposes, we here solve and simulate the
model by computing 50 iterations on the algorithm.

The norm
∥∥pk − p∗∥∥ in the bounds (4.18) and (4.19) corresponds to the standard deviation

of the approximation error. After 50 iterations on the algorithm, this bound, expressed as
a fraction of the standard deviation of the price pk, is 0.0006 or six hundredths of a percent
of the standard deviation of the price.8 The speed of convergence, and as a consequence,
how many iterations that are needed to solve the model accurately, generally depends on the
parameter values. Section 5.3 below studies this dependence in more detail. The number of
iterations also equals the maximum order of expectations considered by the agents. Below,
we denote this maximum order of expectation k.

5.1. Equilibrium price dynamics. In the top row of Figure 1, we have plotted the im-
pulse response function of the price of the asset to an innovation to the persistent component
of supply (left column) and to a transitory shock (right column) using the benchmark pa-
rameterization. For comparison, we have also plotted the impulse response to the same
innovation under the alternative assumptions of full information, i.e. when θt is observed
perfectly by all agents.

It is clear from inspecting Figure 1 that the different information structures imply very
different price dynamics. Noisy private signals result in weaker initial responses to a persis-
tent supply shock compared to the full information case. Imperfect information also makes
the price response to a transitory shock persistent somewhat persistent. That private infor-
mation can be a strong force of inertia in endogenous variables has been noted before, e.g. in
the macroeconomic applications in Woodford (2002), Nimark (2008), Graham and Wright
(2010) and Angeletos and La’O (2009).

As first pointed out by Woodford (2002), the inertial response of the endogenous variable
is caused by the sluggish response of higher-order expectations to a persistent shock. This is
illustrated in the bottom row of Figure 1, where the responses of the hierarchy of expectations
about θt to the two shocks are plotted. After an innovation to θt, first order expectations
respond less on impact than the true shock. First order expectations also respond with
inertia, while the true shock converges geometrically towards zero after the shock as implied
by its AR(1) structure. This pattern is more pronounced for higher-order expectations,
which respond less on impact and with more inertia than lower order expectations.

It is common knowledge of rational expectations that cause higher-order expectation to
respond less than lower order expectations to persistent supply shocks. To see how, note that

8At k = 100, the corresponding approximation error-to-price standard deviation ratio is 2× 10−7. Com-
puting 50 iterations takes about 0.25 seconds on a standard desktop computer. 100 iterations takes about 1
second.
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Figure 1. Impulse responses of pt (top row) and θ
(0:50)
t (bottom row) to in-

novation to persistent (left column) and transitory (right column) component
of supply.

first order expectation respond less than the true shock on impact because some of the price
movement that is due to the persistent supply shock θt will be attributed to the transitory
shock εt. Since agents know that first order expectations on average respond less than the
actual shock, second order expectations must respond even less than first order expectations
to the same shock. This argument can then be applied recursively to understand why a k+1
order expectation responds less than a k order expectation in the impact period.

After a transitory shock εt, expectations about θt respond with some persistence as it
takes time for agents to realize that there has been no actual change in θt. In contrast to
the response to an innovation to the persistent supply shock θt, higher-order expectations
respond more strongly than lower order expectations to the transitory shock εt. However,
as can be seen in the top right panel of Figure 1, the implied impact of the higher-order
expectations about θt on pt is small relative to the direct effect of εt and the response of pt
is close to what it would be under full information.

5.2. Cross-sectional dispersion of expectations. Because agents have access to private
information, the cross-sectional dispersion of expectations in the model is non-degenerate.
Unlike full information models, or models that assume that there are two distinct groups of
agents such as in the paper by Makarov and Rytchkov (2012) or Kasa, Walker and Whiteman
(2014), the model here can match the survey evidence that suggests that market participants
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have dispersed expectations about future economic outcomes, e.g. Thomas (1999), Mankiw,
Reis and Wolfers (2003), Swanson (2006) and Coibion and Gorodnichenko (2012). The
same survey evidence can also be used to discipline the parameters of a model with privately
informed agents. This can be done formally through likelihood based estimation as in Nimark
(2014) and Barillas and Nimark (2016b) who treat individual survey responses from the
Survey of Professional Forecasters as being representative of the forecasts of agents drawn
randomly from the model’s population. A less formal approach is to compare the implied
forecast dispersion of a calibrated model to the data on forecast disagreement. To follow
either of these approaches, it is necessary to compute the model implied cross-sectional
dispersion of expectations in the model and we now show how to do so in the context of the
model.

In the model, the dispersion of expectations is driven by the idiosyncratic noise ηt,j in
the private signals zt,j. The idiosyncratic noise shocks ηt,j are white noise processes that are
orthogonal across agents and to the supply shocks ut and εt. This implies that the cross-
sectional variance of expectations is equal to the part of the unconditional variance of agent
j’s expectations that is due to the idiosyncratic shocks. This quantity can be computed by
finding the variance of the estimates in agent j’s updating equation (3.19), but with the
aggregate shocks ut and εt “switched off”.

Define the agent specific covariance Σj of agent j’s state estimate as

Σj ≡ E

(
θ

(1:k)
t,j −

∫
θ

(1:k)
t,j′ dj

′
)(

θ
(1:k)
t,j −

∫
θ

(1:k)
t,j′ dj

′
)′
. (5.1)

The agent specific covariance can then be computed by the solving the Lyaponov equation

Σj = (I −KkLk)MkΣjM
′
k

(I −KkDk)
′ +KkRηR

′
ηK
′
k
. (5.2)

The covariance Σj captures cross-sectional dispersion of expectations about the state θ
(0:k−1)
t .

What we observe in the survey data is generally forecasts about endogenous variables, such
as future interest rates or future inflation. Given the solved model, it is straight-forward to
translate the dispersion of expectations about the latent state into dispersion about forecasts
of endogenous variables. For instance, to compute the model implied cross-sectional variance
σ2
p,j of expectations about the next period price pt+1, we can use the price function (3.30) to

get

σ2
p,j = g′

k
MkΣjM

′
k
gk. (5.3)

In the parameterization used to solve the model here, the cross-sectional standard deviation
of one period ahead price forecasts is 0.15, or about 12% of the standard deviation of the
price.

5.3. Accuracy and convergence. The dynamics of the endogenous price pt is completely
summarized by its MA representation. Figure 2 illustrates the convergence properties of the
algorithm in this space by plotting the MA representation of the price for each iteration
k = 1, 2, ..., k. After 20 iterations, the algorithm has for all practical purposes converged
and the MA representations for iterations k > 20 are indistinguishable from each other.
This may suggest that about 20 orders of expectation matter quantitatively in equilibrium.
However, this is not the case. Most of the changes in the MA representations that occur as



20 KRISTOFFER P. NIMARK

0 10 20 30 40
-0.2

-0.15

-0.1

-0.05

0

s

MA coefficients on u
t-s

 at iteration k

 

 

k=0
k=1
k=2

0 10 20 30 40
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

s

MA coefficients on 
t-s

 at iteration k

 

 

k=0
k=1
k=2

Figure 2. MA representation of pkt for k = 1, 2, ..., k. Thin solid lines denote
the MA representation for k > 2.

k increases are not due to the inclusion of increasingly high orders of expectations. Instead,
most of the changes are caused by an accumulation of weights attached to relatively low
orders of expectations in the price function (3.30). This is illustrated in Figure 3, where
we have plotted the loadings in the price function g′k for k = 0, 1, 2, ... After 50 iterations,
most of the weight in the price function loads on expectations of order 6 or less, with the
largest weight attached to the average first order expectation. Most of the changes in the
MA representation in Figure 2 as k increases is thus due to the increasing weight attached
to lower order expectations.

0 1 3 5 7 9 11 13 15 17 19
-2

-1.5

-1

-0.5

0

0.5

Order of expectation

Loadings in price function g
k
 on higher order expectations

 

 

k=0
k=1
k=2
k=3

Figure 3. Price function loadings on the k order (x-axis) expectation of price,
i.e. the elements of gk for k = 1, 2, ..., k. The increasing dimension of the state
is manifested by the increasing dimension of the vector gk. Note that g0 is
represented by a point at (0,−1).

The fact that most of the weight in the price function loads on relatively low orders
of expectations suggests that only a few orders of expectations matter quantitatively. A
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second force working in the same direction is the fact that the variance of higher-order
expectations is bounded by the variance of lower order expectations. So not only do higher-
order expectations have less impact on the price, they also have lower variance. Together,
these two features imply that once we have found an accurate law of motion for the state

with 50 orders of expectations, we can in practice set θ
(k)
t = 0 for k > 6 without significantly

altering the dynamics of pt. The standard deviation of the difference between the price
process with only the first six orders of expectations and the price process using 50 orders of
expectations is 0.0007. For perspective, this can be compared to the standard deviation of

pk which is equal to 1.23. While not shown in the figures, to the naked eye, the implied MA
representation of using only the first six orders of expectations is indistinguishable from the

MA representation of pk. The equilibrium of the simple asset pricing model presented here
can thus be accurately represented by a low-dimensional state vector.

5.4. Parameters and approximation error bounds. As mentioned at the beginning
of this section, the number of iterations required to reach an accurate solution generally
depends on the parameters of the model. Figure 4 illustrates how the size and convergence
rates of the approximation error bounds varies with different parameterizations. In each
panel of the figure, the units on the x-axis is the number of iterations and units on the y-axis
is the ratio of the standard deviation of the approximation error and the standard deviation
of the price at the equilibrium fixed point.
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The top left panel shows how the error bound (4.19) depends on the discount rate β.
Unsurprisingly, given that β is also the contractive constant of the algorithm, the lower β
is, the smaller are the approximation errors and the faster is the convergence of the error
bound towards zero. The top right panel shows that a similar relationship holds for the
parameter that governs the persistence of θt. The more persistent this process is, the larger
is the number of iterations needed to achieve a given level of accuracy.

The two bottom panels in Figure 4 shows how the accuracy of the solution depends on
parameters that determine how precise agents’ information is. Lower standard deviations of
either the transitory supply shock εt or the idiosyncratic noise shocks ηt,j imply that agents
have more precise estimates of θt. Lower standard deviations of these shocks also imply
that more iterations are needed to achieve a given degree of accuracy. A limit case may
provide some intuition for why this is the case. As signals become infinitely noisy, agents
will disregard them completely and expectations will not respond at all to shocks. Only the
actual process for θt will then affect the price and the model is already at the fixed point at
iteration k = 0.

Because of the contractive property of the algorithm, the exact specification of the initial
price process p0 does not matter for the equilibrium dynamics of the solved model. However,
the required number of iterations for a given level of accuracy may depend on how the
algorithm is initialized. In particular applications, there may exist numerically more efficient
starting points than the process described by (3.6)-(3.9), in the sense that the algorithm may
converge faster from other starting values. For instance, if one is primarily interested only
in parameterizations with relatively precise signals, it may be better to start the algorithm
from the full information solution (2.9).

6. A class of linear models with private information

This section generalizes the results above to a class of linear dynamic models with privately
informed agents. Here we provide conditions that ensure the existence of a unique equilibrium
in models with multiple endogenous variables and with stationary but otherwise unrestricted
exogenous VARMA processes.

6.1. A general model structure. Consider the class of models that can be described by
a vector valued Euler equation of the form

pt = Λ

∫
E [pt+1 | Ωt,j] dj + FΘΘt + Fwwt : wt ∼ N(0, Im) (6.1)

where pt is an n-dimensional vector of endogenous variables, Θt is a q-dimensional vector of
exogenous variables that follows a first order VAR process

Θt = M0Θt−1 +N0wt (6.2)

Λ, FΘ and Fw are matrices of conformable dimensions. Ωt,j is the information set of agent
j, defined by the filtration

Ωt,j = {zt,j,pt,Ωt−1,j} . (6.3)

The vector of private signals zt,j is of the form

zt,j = DΘΘt +Rzwwt +Rzηηt,j : ηt,j ∼ N(0, I) (6.4)
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where ηt,j is a vector of agent j specific shocks.
The assumption that Θt follows a first order VAR is non-restrictive in practice, as any

finite order VARMA process always can be reformulated as an equivalent first order VAR.
The model in Section 2 above is thus a special case of the more general form (6.1)-(6.4) which
also nests the macro models of Nimark (2008), Melosi (2014) and Rondina and Walker (2014)
and the bond pricing models of Nimark and Barillas (2016a, 2016b) and Struby (2016). To
extend the results of Section 4 to this more general class of models, we first need to extend
the space of analysis to allow for n endogenous variables.

Definition 2. (The Banach space Bn) The Banach space Bn is the nth Cartesian power of
L2 so that Bn ≡ L2 × L2 × ...× L2︸ ︷︷ ︸

n

with associated norm ‖·‖B defined as

‖x‖B ≡
n∑
i=1

‖xi‖ : x ∈ Bn (6.5)

where ‖·‖ is the norm of L2.

That the product space Bn is complete, and thus a Banach space, follows from the fact
that ‖xi‖ is a norm on the (complete) Hilbert space L2 and because the norm ‖·‖B on Bn is
a conserving norm on the product space Bn (see Theorem 1.6.1 in O’Searcoid 2006).

With the natural modifications required to replace scalars with vectors and matrices,
Theorem 1 extends the results of Section 4.

Theorem 1. (Unique equilibrium and finite approximation) A model of the form (6.1)-(6.4)
has a unique solution that can be approximated arbitrarily well with a finite-dimensional state
if

|eig(M0)| < 1 (6.6)

and

‖Λ‖B < α (6.7)

for some 0 ≤ α < 1 where ‖·‖B is the operator norm on Bn defined as

‖Λ‖B ≡ sup
x 6=0

‖Λx‖B
‖x‖B

. (6.8)

Proof. See Appendix. �

The logic of the proof of Theorem 1 follows closely that of Proposition 1, with the dis-
counting condition 0 ≤ β < 1 replaced by the bound (6.7) on the matrix norm of Λ. The
role of the eigenvalue bound (6.6) is to ensure that FΘΘt ∈ Bn and corresponds to the
condition that 0 ≤ |ρ| < 1 in the simple model of Section 2. The Appendix describes a
modified version of the algorithm derived in Section 3 that can be used to solve a model of
the form (6.1)-(6.4) taking the matrices Λ, FΘ, Fw,M0, N0, DΘ, Rzw and Rzη as inputs. The
modified algorithm is again a contraction, implying that the equilibrium dynamics of pt can
be approximated to an arbitrary accuracy with a finite-dimensional state representation.
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Both the proof of Proposition 1 and Theorem 1 explicitly use that agents observe the
endogenous variables in pt. However, proving that the mapping T is a contraction is sub-
stantially simpler when agents observe only exogenous signals. The Appendix contains a
proof that T is a contraction also when Ωt,j = {zt,j,Ωt−1,j} .

7. Conclusions

In many market settings, it is natural to assume that agents have access to private in-
formation that may influence their decisions and strategic behaviour. Yet, fully dynamic
infinite horizon models with privately informed agents are arguably under-studied in the
literature. A principal difficulty in studying this class of models is due to the infinite regress
of expectations problem that arises from agents’ need to “forecast the forecasts of others”.
In order to make progress, existing studies have been forced to make restrictive assumptions
to circumvent the infinite regress of expectations.

This paper provides methods that can be used to analyze a relatively general class of linear
dynamic rational expectations models that do feature an infinite regress of expectations.
The paper makes two main contributions. First, we derived conditions that guarantee the
existence of a unique equilibrium. The conditions for this result to hold are quite weak: It is
sufficient that agents discount the future and that the exogenous processes follow stationary
but otherwise unrestricted VARMA processes. Second, we showed that under the same
conditions, and in spite of the infinite regress of expectations, the equilibrium of this class
of models can be approximated arbitrarily well with a finite-dimensional state and explicit
approximation error bounds.

The theoretical literature has to date produced a wealth of qualitative results derived from
the interactions between privately informed agents. Many of these results have been derived
using highly stylized models that provide sharp theoretical insights. Because the methods
proposed here allow for a more general model structure with fewer restrictive assumptions
than the existing alternatives, it can be used to solve richer models that more closely resem-
bles those of the full information literature. The method proposed here thus helps shorten
the step between the theoretical literature and the quantitative macroeconomics and finance
literature. The solution method is also fast and flexible enough to estimate model parameters
using likelihood-based methods, as evidenced by the applications in Nimark (2014), Melosi
(2016), Barillas and Nimark (2016a, 2016b) and Struby (2016).
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Appendix A. The Kalman gain

The Kalman gain Kk associated with the system (3.20)-(3.21) can be computed using the
formulas

Kk = (ΣkD
′
k +NkR

′) (DkΣkD
′
k +RR′)−1 (A.1)

Σk = Mk

(
Σk − (ΣkD

′
k +NkR

′) (DkΣkD
′
k +RR′)−1 (ΣkD

′
k +NkR

′)
′)
M ′

k (A.2)

+NkN
′
k

where R ≡
[
Rw Rη

]
. For a derivation, see for instance Ljungqvist and Sargent (2004) or

Nimark (2015).

Appendix B. Proof of Lemma 1

Lemma 1 (The mapping T : L2 → L2) For the time series process x ∈ L2, define the
mapping T of x as

Tx ≡ β

∫
E
[
xt+1 | Ωx

t,j

]
dj + θt + εt. (B.1)

where Ωx
t,j =

{
xt, zt,j,Ω

x
t−1,j

}
. Then T is a self map on L2 so that x ∈ L2 implies that

Tx ∈ L2.

Proof. We want to show that when x belongs to L2, then so does Tx. The space L2 is closed
under addition, and by definition, θt, εt ∈ L2. It thus suffices to show that x ∈ L2 implies
that β

∫
E
[
xt+1 | Ωx

t,j

]
dj ∈ L2, or equivalently, that

∥∥β ∫ E [xt+1 | Ωx
t,j

]
dj
∥∥ <∞.

The following steps deliver the desired result∥∥∥∥β ∫ E
[
xt+1 | Ωx

t,j

]
dj

∥∥∥∥ = |β|
∥∥∥∥Γx(L)wt +

∫
Λx(L)ηt,jdj

∥∥∥∥ (B.2)

= |β| ‖Γx(L)wt‖ (B.3)

≤ |β| ‖Γx(L)wt + Λx(L)ηt,j‖ (B.4)

= |β| ‖Pt,jxt+1‖ (B.5)

≤ ‖xt+1‖ (B.6)

< ∞ (B.7)

The first equality follows from that the expectation E
[
xt+1 | Ωx

t,j

]
lies in the space spanned by

the current and lagged values of wt and ηt,j and thus can be expressed as Γx(L)wt+Λx(L)ηt,j.
The equality on the second line follows from that

∫
Λx(L)ηt,jdj = 0. The inequality on

the third line follows from the fact that wt and ηt,j are orthogonal. The equality on the
fourth line follows from the projection theorem, which states that the conditional expectation
E
[
xt+1 | Ωx

t,j

]
exists and is equal to the projection Pt,jxt+1 of xt+1 onto the subspace spanned

by Ωx
t,j (e.g. Brockwell and Davis 2006). The inequality on the fifth line follows from that

the operator norm of any projection is 1 so that ‖Pt,jxt+1‖ ≤ ‖xt+1‖ and because |β| < 1.
The last inequality follows from x ∈ L2. �
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Appendix C. Proof of Theorem 1

The proof of Theorem 1 follows closely the structure of the proof of Proposition 1, with the
natural adjustments necessary to allow for pt ∈ Bn. We present the proof as a consequence
of three separate lemmas, building on the results in Section 4. The first lemma shows that
the mapping implied by the Euler equation (6.1) is a self-map on Bn.

Lemma 3. (The mapping T : Bn → Bn) For the vector time series process x ∈ Bn, define
the mapping T of x as

Tx = Λ

∫
E
[
xt+1 | Ωx

t,j

]
dj + FΘΘt + Fwwt (C.1)

where Ωx
t,j ≡ {xt, zt,j,Ωt−1,j} . Then T is a self-map on Bn so that x ∈ Bn implies that

Tx ∈ Bn.

The eigenvalue bound (6.6) ensures that FΘΘt ∈ Bn. The proof of Lemma 3 then simply
entails repeating the steps in the proof of Lemma 1, for each element xi : i = 1, 2, ...n where xi
is the ith element of x, establishing that if x is an element of Bn, then so is

∫
E
[
xt+1 | Ωx

t,j

]
dj.

The next lemma establishes that the average expectation
∫
E
[
xt+1 | Ωx

t,j

]
dj in (C.1) can

be expressed in a form that makes it easier to compare the distances ‖Tx− Ty‖
B

and
‖x− y‖

B
.

Lemma 4. (MA representation of the average expectation) Define the matrix Q so that
xt = Qst,j. The average expectation

∫
E
[
xt+1 | Ωx

t,j

]
dj can be written as∫

E
[
xt+1 | Ωx

t,j

]
dj = Q

[
L−1Cx(L)

]
+

wt (C.2)

where Cx(L) is a lag polynomial and [ ]+ is the annihilation operator that sets all negative
powers of L to zero.

Proof. Denote the vector of signals observed by agent j as st,j. The proof then follows from
steps (4.6)-(4.11) from Lemma 2, but with the vector e′2 replaced by the matrix Q. �

The final lemma then uses the same logic as in Proposition 1, but generalized to vector
valued processes in Bn to show that T is a contraction.

Lemma 5. (T is a contraction) The mapping T : Bn → Bn is a contraction if

‖Λ‖B < α (C.3)

for some 0 ≤ α < 1.

Proof. For any x,y ∈ Bn, we need to show that

‖Tx− Ty‖
B
≤ α ‖x− y‖

B
. (C.4)

for some 0 ≤ α < 1. We start by finding the distance ‖x− y‖
B
.

Using Wold’s theorem as in Lemma 4, we can write x and y in MA form as

xt = QCx(L)wt, yt = QCy(L)wt. (C.5)
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or

xt =
∑

Γx,swt−s, yt =
∑

Γy,swt−s. (C.6)

where Γx,s = QCx,s and Γy,s = QCy,s. The distance ‖x− y‖B induced by the norm (6.5) can
then be computed as

‖x− y‖B =
n∑
i=1

‖xi − yi‖ . (C.7)

The components of the sum on the right hand side of (C.7) are given by

‖xi − yi‖ =

√√√√ m∑
τ=1

∞∑
s=0

(γi,τ,x,s − γ2,τ,y,s)
2 (C.8)

where γi,τ,x,s is the i, τ element of Γx,s, γi,τ,y,s is the i, τ element of Γy,s and m is the dimension
of wt.

The compare the distance ‖Tx− Ty‖B with ‖x− y‖B, use that from Lemma 4, and using
the notation defined in (C.6), we can express as ‖Tx− Ty‖B as

‖Tx− Ty‖B =
∥∥∥Λ
[
L−1Γx(L)− L−1Γy(L)

]
+

wt

∥∥∥
B

(C.9)

≤ ‖Λ‖B
∥∥∥[L−1Γx(L)− L−1Γy(L)

]
+

wt

∥∥∥
B

(C.10)

≤ ‖Λ‖B ‖[Γx(L)− Γy(L)] wt‖B (C.11)

≤ α ‖x− y‖B . (C.12)

The inequality on the second line follows from the definition of the operator norm (6.8). The
inequality on the third line follows from that

∥∥∥[L−1Γx(L)− L−1Γy(L)
]

+
wt

∥∥∥
B

=
n∑
i=1

√√√√ m∑
τ=1

∞∑
s=1

(γi,τ,x,s − γ2,τ,y,s)
2 (C.13)

≤
n∑
i=1

√√√√ m∑
τ=1

∞∑
s=0

(γi,τ,x,s − γ2,τ,y,s)
2 (C.14)

= ‖x− y‖B . (C.15)

The inequality on the last line (C.12) follows from the condition (C.3) on the operator norm
of Λ. �

That a system of the form (6.1)-(6.4) has a unique solution then follows from the contrac-
tive property of T .
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Appendix D. Exogenous signals

The proofs of Proposition 1 and Theorem 1 used that agents can observe the endoge-
nous variables in pt. Here we show that the mapping T is a contraction also when agents
only observe the vector zt,j of exogenous signals. Comparing the distances ‖x− y‖B and
‖Tx− Ty‖B for x,y ∈ Bn is then substantially simpler.

Proposition 2. (T is a contraction with exogenous signals) Define the mapping T : Bn → Bn

Tx = Λ

∫
E
[
xt+1 | Ωz

t,j

]
dj + FΘΘt + Fwwt (D.1)

for x ∈ Bn and where Ωz
t,j ≡ {zt,j,Ωt−1,j} . T is then a contraction mapping if |eig(M0)| < 1

and ‖Λ‖B < α.

Proof. That T is a self-map on Bn when |eig(M0)| < 1 follows from Lemma 3. Define the
average agent in period t as the agent whose expectations coincide with the cross-sectional
average expectation. Denote the the projection onto the space spanned by the history of
exogenous signals observed by the average agent in period t as Pz. We can then express the
distance ‖Tx− Ty‖B as

‖Tx− Ty‖B = ‖ΛPzxt+1 − ΛPzyt+1‖B (D.2)

= ‖ΛPz (xt+1 − yt+1)‖B (D.3)

≤ ‖Λ‖B ‖Pz (xt+1 − yt+1)‖B (D.4)

≤ ‖Λ‖B ‖x− y‖B (D.5)

< α ‖x− y‖B . (D.6)

The equality on the second line follows from that the fact that projections are linear opera-
tors. The inequality on the third line follows from the definition of the operator norm (6.8).
The inequality on the fourth line follows from the fact that the norm of a projection operator
is 1, i.e. ‖Pz‖B = 1 and from that (with a slight abuse of notation) ‖xt+1 − yt+1‖ = ‖x− y‖.
The inequality on the last line, which completes the proof, follows from the condition that
‖Λ‖B < α. �
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Appendix E. A Recursive Solution Algorithm for the General Model

To show that the equilibrium can be approximated to an arbitrary precision with a finite
state, we need to modify the algorithm of Section 3 to allow for the more general form of
(6.1)-(6.4).

Step 1. As a starting point, take the zero order process for p

p0
t = G0Θt + Fwwt (E.1)

Θt = M0Θt−1 +N0wt (E.2)

where
G0 = FΘ (E.3)

and the associated measurement equation

s0
t,j = D0Θ

(0:k)
t +Rwwt +Rηwt,j : wt,j ∼ N (0, I) (E.4)

where

D0 =

[
DΘ

G0

]
, Rw =

[
Rzw

Fw

]
, Rη =

[
Rzη

0

]
. (E.5)

Step 2. Compute the matrices Mk+1 and Nk+1 as

Mk+1 =

[
M0 0q×kq

0kq×q 0kq×kq

]
+

[
0q×kq 0q×q

KkDkMk 0kq×q

]
+

[
0q×q 0q×kq
0kq×q (I −KkDk)Mk

]
(E.6)

Nk+1 =

[
N0

(KkDkNk +KkRw)

]
. (E.7)

to get the kth step law of motion

Θ
(0:k)
t = MkΘ

(0:k)
t−1 +Nkwt : wt ∼ N (0, I) (E.8)

where the matrix Dk defined as

Dk =

[
DΘ 0q×kq

Gk

]
(E.9)

and Kk is the Kalman gain (A.1).

Step 3. Compute the k-order process pk+1
t by using the vector and matrix equivalent of

(3.30)

pk+1
t = Gk+1Θ

(0:k+1)
t + Fwwt (E.10)

where
Gk+1 = FΘ + ΛGkMkHk+1 (E.11)

and
Hk ≡

[
0(kq)×q Ikq

]
. (E.12)

Step 4. Repeat Steps 2− 3 for k = 1, 2, 3, ..., k.
The number of iterations k can be chosen to achieve to achive any desired degree of

accuracy, using the approximation error bounds (4.18) and (4.19) but with α replacing β
and the norm ‖·‖B replacing ‖·‖.


