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Abstract

We develop and estimate a tractable equilibrium term structure model populated with
rational but heterogeneously informed traders that take on speculative positions to ex-
ploit what they perceive to be inaccurate market expectations about future bond prices.
The speculative motive is an important driver of trading volume. Yield dynamics due to
speculation are (i) statistically distinct from classical term structure components due to
risk premia and expectations about future short rates and are orthogonal to public in-
formation available to traders in real time and (ii) quantitatively important, accounting
for a substantial fraction of the variation of long maturity US bond yields.
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1. Introduction

A fundamental question in finance is what the economic forces are that explain variation
in asset prices and returns. This paper demonstrates that allowing for heterogeneous
information sets among rational traders introduces a speculative component in bond
yields that is absent in models in which all traders share the same information. The
speculative term is empirically important and statistically distinct from both risk premia
and terms reflecting expectations about future risk free short rates.

Many bonds, and US treasury bonds in particular, are traded in very liquid secondary
markets. In such a market, the price an individual trader will pay for a long maturity
bond depends on how much he thinks other traders will pay for the same bond in
the future. If traders have access to different information, this price may differ from
what an individual trader would be willing to pay for the bond if he had to hold it
until maturity. The possibility of reselling a bond then changes its equilibrium price as
traders take speculative positions in order to exploit their private information.

This paper presents and structurally estimates an equilibrium model of the term struc-
ture of interest rates that is populated with traders that engage in this type of speculative
behavior. In the model, individual traders can identify bonds that, conditional on their
own information sets, have a positive expected excess return. In the absence of arbi-
trage, expected returns in excess of the risk free rate must be compensation for risk.
Traders will hold more of the bonds with a higher expected return in their portfolios. In
equilibrium, the increased riskiness of a less balanced portfolio is exactly off-set by the
higher expected return. We show formally that heterogeneous information introduces
a source of time varying expected excess returns that, unlike the excess returns docu-
mented by for instance Fama and Bliss (1987) and Campbell and Shiller (1991), cannot
be predicted conditional on past bond yields.

When aggregated, the speculative behaviour of individual traders introduces new dy-
namics to bond prices. We demonstrate that when traders have heterogeneous informa-
tion sets, bond yields are partly determined by a speculative component that reflects
traders’ expectations about the error in the average, or market, expectations of future
risk-free interest rates. Since it is not possible for individual traders to predict the errors
that other traders make based on information available to everybody, the speculative
component in bond prices must be orthogonal to publicly available information. Het-
erogeneous information thus introduces a third term in bond yields that is statistically
distinct from the classical components of yield curve decompositions, i.e. terms due to
risk premia and terms reflecting expectations about future risk-free short rates.

Despite the fact that the speculative component in bond yields must be orthogonal to
public information, it is possible to quantify its importance using only publicly available
data on bond yields. This is so because we as econometricians have access to the full
sample of data and the speculative term is orthogonal only to public information available
to traders in real time. That is, we can use public information available in period
t + 1, t + 2, ... and so on, to back out an estimate of the speculative term in period t.
The estimated model suggests that speculative dynamics are quantitatively important
and can explain a substantial fraction of the variation in US bond yields.
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Bond prices are derived from the optimal portfolio decisions of traders and because
traders change their portfolios in response to new information, the model generates
trading volume. Turnover, as measured by trading volume over average supply of bonds,
is on the order of 50 per cent for medium maturity bonds. Traders’ portfolio holdings of
bonds are motivated both by fundamental and speculative purposes. We find that for
short and long maturity bonds, the standard deviation of a trader’s speculative holding
of bonds is about 80 per cent of the standard deviation of his total bond holdings.
The speculative motive appears to be least important for traders’ holdings of bonds of
maturities just below 1 year, for which the variation of the speculative holdings is about
35 per cent of the total variation.

A necessary condition for traders to have any relevant private information about bond
returns is that current bond prices do not perfectly reveal the state of the economy. There
are both a priori reasons and empirical evidence to support the view that bond prices
do not reveal all information relevant for predicting future bond returns. Grossman and
Stiglitz (1980) argued that if it is costly to gather information and prices are observed
costlessly, prices cannot fully reveal all information relevant for predicting future returns.
For the bond market, the most important variable to forecast is the short interest rate.
In most developed countries, the short interest rate is set by a central bank that responds
to macroeconomic developments. If it is costly to gather information about the macro
economy, Grossman and Stiglitz’s argument implies that bond prices cannot reveal all
information relevant for predicting bond returns.

In practice, there is a vast amount of financial and macro economic data available
that central banks may use to inform policy decisions, e.g. Bernanke and Boivin (2003).
Mönch (2008) demonstrates within a no-arbitrage FAVAR term structure model that
using a large number of macro economic time series does help predict future yields
at intermediate to long horizons. In a few closely related papers, Joslin, Priebsch and
Singleton (2014) and Duffee (2011) present evidence suggesting that the factors that can
be found by inverting yields are not sufficient to optimally predict future bond returns.
They find that while the usual level, slope and curvature factors explain virtually all of
the cross sectional variation in yields, additional factors are needed to forecast excess
returns. Ludvigson and Ng (2009) provide more evidence that current bond yields are
not sufficient to optimally forecast bond returns. They show that compared to using
only yield data, drawing on a very large panel of macroeconomic data helps predict
excess returns. Stated another way, these statistical models all suggest that current
bond yields are not sufficient to predict future bond yields optimally.

Empirically, we find that the speculative component in our model contains substantial
additional information about future bond returns that is not spanned by neither the
macro variables used by Joslin et al (2014) nor the macro factors in Ludvigsson and Ng
(2009). This result is based on an ex post smoothed estimate of the latent state and is
not helpful for real time prediction of returns. However, it demonstrates that the latent
state of our model is not simply proxying for unspanned, but observed, macro variables.

If bond prices do not reveal all the information that is relevant for predicting bond
returns, and if the number of potentially useful time series is very large, it becomes more
probable that different traders will use different subsets of the available information to
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make decisions. Here, we model this by endowing traders with partly private information
that they can exploit when trading. This set up also accords well with the casual
observation that at least one motive for trade in assets is possession of information that
is not, or at least is not believed to be, already reflected in prices. Formally, our set-up is
similar to the information structure in Diamond and Verecchia (1981), Admati (1985),
Singleton (1987), Allen, Morris and Shin (2006) and Bacchetta and van Wincoop (2006).

There exists a very large theoretical literature that studies asset pricing with het-
erogeneously informed agents. Hellwig (1980), Diamond and Verecchia (1981), Admati
(1985) and Singleton (1987) are some of the early references. More recent examples
include papers by Allen, Morris and Shin (2006), Kasa, Walker and Whiteman (2014),
Bacchetta and van Wincoop (2006, 2007), Cespa and Vives (2012) and Makarov and
Rytchkov (2012). These papers either present purely theoretical models or models cal-
ibrated to explain some feature of the data. The model presented here is estimated
directly using likelihood based methods. To the best of our knowledge, this is the first
paper to empirically quantify the importance of heterogeneous information sets for asset
prices and returns in an internally consistent structural model.

The traders that populate our model use the information in both their private signals
and in bond prices efficiently in order to predict bond returns. This makes our set-up
different from existing alternative approaches to model disagreement, or differences in
beliefs, such as the term structure model in Xiong and Yan (2009). Xiong and Yan study
a model in which two groups of agents misinterpret a common, but uninformative, signal
about future inflation in different ways. This generates beliefs about the real return of
bonds that differ across the two groups of traders. Xiong and Yan show that in such a set
up, bond prices are determined by a wealth-weighted average of the two groups’ beliefs
and argue that differences in beliefs can explain both the failure of the expectations
hypothesis and the excess volatility of long bond yields. An important difference between
their set up and ours is that the traders in Xiong and Yan’s model do not attempt to use
the information contained in bond prices to make better predictions about future bond
returns, even though this would be possible in their model. In the model of Xiong and
Yan, an econometrician outside the model can predict excess returns from past bond
prices, and could in principle trade on this information and would then make larger
profits than the agents inside their model. To convincingly estimate the quantitative
importance of speculative dynamics, we think it is important to make sure that there
are no unexploited profit opportunities from running simple predictive regressions. In
our model, because agents use the information contained in bond prices efficiently, an
outside econometrician conditioning only on past bond prices would do worse than the
agents inside the model.

Another difference-in-beliefs based alternative to model expectation heterogeneity is
to let traders learn rationally from prices but starting from heterogenous priors as in
Buraschi and Jiltsov (2006). However, rational learning from common signals implies
that the beliefs of different traders will converge over time. Such an approach is thus not
suitable for modeling and estimating phenomena that do not subside over time. Because
agents in our model observe partly private signals about a state that is time-varying,
the beliefs of our traders do not converge over time. In the term structure model of
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Buraschi and Whelan (2016), two agents learn about consumption growth rates from
common signals but use different models to do so. In their set up, the two agents
disagree also asymptotically, but in expectations, one agent is always more optimistic
than the other, raising questions regarding why agents do not update their models in
face of evidence that it is misspecified.

Based on these considerations, we think modeling heterogenous expectations as aris-
ing from individual traders observing different signals while also using the information
contained in bond prices efficiently is a more suitable approach for empirical work.

2. A Bond Pricing Model

This section presents an equilibrium bond pricing model. Traders are risk averse,
rational, and ex ante identical but observe different signals relevant for predicting future
bond prices. They choose a portfolio of risky bonds in order to maximize next-period
wealth. Traders that have observed signals that make them more optimistic about the
return of a given bond will hold relatively more of that bond in their portfolios. The
equilibrium price of a bond is a function of the average expectations of the price of the
same bond in the next period, discounted by the risk-free short interest rate. Bond
prices are also affected by supply shocks that prevent equilibrium prices from revealing
the average expectation of future bond prices.

The model is relatively tractable and in Section 3 we use it to draw out the conse-
quences for term structure dynamics of relaxing the assumption that traders all have
access to the same information.

2.1. Demand for long maturity bonds. Time is discrete and indexed by t. As in
Allen, Morris and Shin (2006) there are overlapping generations of agents who each live
for two periods. Each generation consists of a continuum of households with unit mass.
Each household is endowed with one unit of wealth that it invests when young. When
old, households unwind their asset positions and use the proceeds to consume. Unlike in
the model of Allen et al, the owners of wealth, i.e. the households, do not trade assets
themselves. Instead, a continuum of traders, indexed by j ∈ (0, 1), trade on behalf of
the households, with households diversifying their funds across the continuum of traders.
While not modeled explicitly here, this set up can be motivated as a perfectly competitive
limit case of the mutual funds model of Garcia and Vanden (2009) that allows uninformed
households to benefit from mutual funds private information, while diversifying away
idiosyncratic risk associated with individual funds. More importantly, the assumption
that the ownership of the assets is separated from the privately informed traders keeps
the model tractable by abstracting from information induced wealth heterogeneity.

The formal structure of the model is as follows. Trader j invests one unit of wealth in
period t on behalf of households born in period t. In period t+ 1 trader j unwinds the
position of the now old generation of households who then use the proceeds to consume.
Traders are infinitely lived and perform the same service for the next generation of
households.

There are two types of assets: a risk-free one period bond with (log) return rt and
risky zero-coupon bonds of maturities 2, 3, ..., n periods. Trader j chooses a vector of
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portfolio weights αj
t in order to maximize the expected log of wealth under management

W j
t+1 in period t+ 1. That is, trader j solves the problem

max
αj

t

E
[
logW j

t+1 | Ω
j
t

]
(2.1)

subject to
W j

t+1 = 1 + rpt,j (2.2)

where Ωj
t denotes trader j’s information set and rpt,j is the log return of the portfolio

chosen by trader j in period t. All traders observe the short risk-free rate rt as well as
the price of all bonds.

In equilibrium, log returns of individual bonds will be normally distributed. However,
the log return on a portfolio of assets with individual log normal returns is not normally
distributed. Following Campbell and Viceira (2002a, 2002b) we therefore use a second
order Taylor expansion to approximate the log excess portfolio return as

rpt,j − rt = α′jt rxt+1 +
1

2
α′jt diag

[
Σj

rx,t

]
− 1

2
α′jt Σj

rx,tα
j
t (2.3)

where rxt+1 is a vector of period t+ 1 excess returns on bonds defined as

rxt+1 ≡


p1t+1 − p2t − rt
p2t+1 − p3t − rt

...
pn−1t+1 − pnt − rt

 (2.4)

and pnt is the log price of a bond with n periods to maturity. The matrix Σj
rx,t is the

covariance of log bond returns conditional on trader j’s information set. In equilibrium,
conditional returns of individual bonds are normally distributed, with time-invariant
conditional covariances that are common across all traders. We can thus suppress the
time subscripts and trader indices on the conditional bond return covariance matrix and
write Σrx instead of Σj

rx,t for all t and j. Maximizing the expected log wealth (2.2) with

respect to αj
t then gives the optimal portfolio weights

αj
t = Σ−1rxE

[
rxt+1 | Ωj

t

]
+

1

2
Σ−1rx diag [Σrx] . (2.5)

The higher return a trader expects to earn on a bond, the more will he hold of it
in his portfolio. Because traders with different return expectations will hold different
portfolios, the conditional variance of portfolio returns will differ across traders. Risk
aversion prevents the most optimistic trader from demanding all of the available supply.
Since each trader j has one unit of wealth to invest, integrating the portfolio weights
(2.5) across traders yields the aggregate demand for bonds.

2.2. Bond supply. The vector of bond supply st is stochastic and distributed according
to

st = µ + Σ−1rx vt : vt ∼ N (0, V V ′) (2.6)

To simplify notation, the vector of supply shocks vt are normalized by the inverse of the
conditional variance of bond prices Σ−1rx . The supply shocks vt play a similar role here as
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the noise traders in Admati (1985). That is, they prevent equilibrium prices from fully
revealing the information held by other traders. While there may be some uncertainty
about the total number of bonds outstanding, a more appealing interpretation of the
supply shocks is in terms of effective supply, as argued by Easley and O’Hara (2004).
They define the “float” of an asset as the actual number of assets available for trade in
a given period.

The effective float may vary for several reasons that are not directly driven by expected
bond returns. For instance, treasury bonds are a preferred form of collateral that can
be used as such in transactions otherwise unrelated to the bond market, e.g. Bartolini,
Hilton, Sundaresan and Tonetti (2010). Many mutual funds have investment rules that
specify that a fixed proportion of their assets must be held in US Treasuries, see Gomes,
Kotlikoff and Viceira (2008). Such rules may force funds to buy or sell bonds when the
value of other asset classes changes, affecting the available supply of treasuries. Other
financial intermediaries such as insurance companies and pension funds have strong
preferences for particular maturities, i.e. some financial institutions may have preferred
(maturity) habitats as in Vayanos and Vila (2009) and Greenwood and Vayanos (2014).
Such entities take positions that are determined by factors partly outside the bond
market and may thus influence the effective supply of bonds of different maturities. The
Federal Reserve also perform open market operations by buying and selling treasuries,
again affecting the amount of treasuries that are available to trade in secondary market.

2.3. Equilibrium bond prices. Equating aggregate demand
∫
αj

tdj with supply st
and solving for the log price pnt gives

pnt =
1

2
σ2
n − rt +

∫
E
[
pn−1t+1 | Ω

j
t

]
dj − Σn

rxµ− vnt (2.7)

where 1
2
σ2
n and vnt are the relevant elements of 1

2
diag [Σrx] and vt respectively and Σn

rx

is the nth row of Σrx. The price of an n period bond in period t thus depends on the
average expectation in period t of the price of an n− 1 period bond in period t+ 1.

2.4. The term structure of interest rates and higher order expectations. The
log price of a one-period risk-free bond is the inverse of the short interest rate, i.e.

p1t = −rt. (2.8)

Taking this as the starting point we can apply (2.7) recursively to find the price of long
maturity bonds. The log price of a two period bond is then given by

p2t =
1

2
σ2
2 − rt −

∫
E
[
rt+1 | Ωj

t

]
dj − Σ2

rxµ− v2t (2.9)

i.e. p2t is a function of the average first order expectations about the next period risk
free rate rt.

Continuing with the same logic, the price of a three period bond is the average period
t expectation of the price of a two period bond in period t+ 1, discounted by the short
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rate rt. Leading (2.9) by one period and substituting into (2.7) with n = 3 gives

p3t =
1

2

(
σ2
2 + σ2

3

)
− Σ2

pµ− Σ3
pµ (2.10)

−rt −
∫
E
[
rt+1 | Ωj

t

]
dj

−
∫
E

[∫
E
[
rt+2 | Ωj′

t+1

]
dj′ | Ωj

t

]
dj

−v3t .

The expression (2.10) demonstrates that the period t price of a three period bond is a
function not only of the average expectation of future risk-free interest rates but also of
higher order expectations. That is, the price partly depends on the average expectation
in period t of the average expectation in period t + 1 of the risk-free rate in period
t+ 2. In general, second and higher order expectations do not coincide with first order
expectations when traders have heterogenous information sets. The price of a 3 period
bond will then deviate from the “consensus value” of the bond, i.e. the price the bond
would have if it reflected only the average (first order) period t expectation about risk-
free interest rates in period t+ 1 and t+ 2.

Higher order expectations will matter for the price of all bonds of maturity n > 2.
Recursive forward substitution of (2.7) can be used to find a general expression for the
price of an n period bond as

pnt =
n∑

i=2

(
1

2
σ2
i − Σi

rxµ

)
−

n−1∑
k=0

r
(k)
t:t+k − v

n
t (2.11)

where we define the more compact notation

r
(k)
t:t+k ≡

∫
E

[∫
E

[
...

∫
E
[
rt+k | Ωj′′

t+k−1

]
dj′′... | Ωj′

t+1

]
dj′ | Ωj

t

]
dj (2.12)

for a k order expectation of rt+k. The price of an n-period bond thus depends on average
expectations of future short rates of order up to n − 1. As usual, the yield ynt of an n
period bond can be computed as ynt = −n−1pnt .

2.5. Unconditional bond yields. Traders form model consistent expectations which
implies that the unconditional mean of the higher order expectations of the risk-free
rate in the bond price equation (2.11) coincide with the true unconditional mean. The
unconditional yield of an n period bond is thus given by

E [ynt ] = E [rt] + n−1
n∑

i=2

(
Σi

rxµ−
1

2
σ2
i

)
(2.13)

The term E [rt] in (2.13) reflects how the average risk-free short rate affects long maturity
yields. The second term, n−1

∑n
i=2 Σi

rxµ, captures both risk-premia via the covariances
in Σi

rx and supply effects from the vector µ. Risk premia will be high if the conditional
variances are large or if conditional excess returns are positively correlated. The average
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supply of bonds may increase or decrease bond yields depending on whether the condi-
tional returns are positively or negatively correlated. The last component on the right
hand side of (2.13) is a Jensen’s inequality term due to the log transformation.

Unconditional yields depend on the conditional covariance of bond returns and will
thus be influenced by traders’ information sets. However, the unconditional yields are
known to the traders in the model and do not influence their filtering problem.

3. Heterogeneous information, excess returns and speculation

In this section we derive the main theoretical implications of relaxing the assumption
that all traders have access to the same information. First, we will demonstrate that het-
erogeneous information introduces trader-specific risk premia. We prove formally that,
unlike classical bond risk premia, risk premia due to information heterogeneity must be
orthogonal to publicly available information. Second, we define the speculative portfolio
as the component of a trader’s portfolio held in order to exploit what he perceives to
be inaccurate market expectations about next period bond prices. Third, we derive
the speculative component of bond yields and prove that, just like the trader specific
component in risk-premia, it must be orthogonal to publicly available information.

3.1. Heterogenous information and expected excess returns. The holding period
return on a zero-coupon bond depends on how its price changes over time. To the extent
that different traders have different expectations about future bond prices, they will also
have different expectations about bond returns. In our model, this can be seen most
clearly from the definition of the realized excess return on an n period bond

rxnt+1 ≡ pn−1t+1 − pnt − rt. (3.1)

The excess return that trader j expects to earn on an n period bond is thus given by

E
[
rxnt+1 | Ω

j
t

]
= E

[
pn−1t+1 | Ω

j
t

]
− pnt − rt. (3.2)

since current bond prices and short rates are directly observed by all traders. By substi-
tuting out the current bond price pnt using the expression (2.7), the excess return that
trader j expects to earn on an n period bond can be expressed as a sum of a trader
specific and a common component

E
[
rxnt+1 | Ω

j
t

]
= E

[
pn−1t+1 | Ω

j
t

]
−
∫
E
[
pn−1t+1 | Ω

j′

t

]
dj′︸ ︷︷ ︸

trader specific

− 1

2
σ2
n + Σn

rxµ + vnt︸ ︷︷ ︸
common

(3.3)

In equilibrium, a positive expected excess return can only be earned as compensation
for risk. Since individual portfolios are determined by expected excess returns and
because traders are risk-averse, a trader who is more optimistic than the average trader
about the return of an n period bond will hold more of it in his portfolio and have
a larger conditional portfolio return variance. The risk that a more optimistic trader
is compensated for is thus the risk associated with holding a portfolio with a higher
conditional variance of returns.
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In the absence of information heterogeneity, the expected excess return would be
determined by the constants 1

2
σ2
n + Σn

rxµ and the supply shock vnt . There is thus a time-
varying component in risk premia that is common to all traders. However, the component
of excess return that is due to information heterogeneity is statistically distinct from the
common component since it must be orthogonal to public information in real time.
Before proving this statement formally, we first define the relevant information set.

Definition 1. The public information set Ωt at time t is the intersection of the period
t information sets of all traders

Ωt ≡
⋂

j∈(0,1)

Ωj
t . (3.4)

Proposition 1. The trader specific component in the expected excess return

E
[
rxnt+1 | Ω

j
t

]
−
∫
E
[
rxnt+1 | Ω

j′

t

]
dj′ (3.5)

is orthogonal to public information in real time.

Proof. For any random variable X, the law of iterated expectations (e.g. Brockwell and
Davis 2006) states that

E (E [X | Ω′] | Ω) = E (X | Ω) (3.6)

if and only if Ω ⊆ Ω′. Take expectations of the left hand side of (3.5) with respect to
the public information set (3.4) and use that Ωt ⊆ Ωj

t to get

E

[(
E
[
rxnt+1 | Ω

j
t

]
−
∫
E
[
rxnt+1 | Ω

j′

t

]
dj′
)
| Ωt

]
= E

[
rxnt+1 − rxnt+1 | Ωt

]
(3.7)

= 0 (3.8)

which completes the proof. �

In two influential papers, Fama and Bliss (1987) and Campbell and Shiller (1991)
argued that excess returns on bonds can be predicted using current yields. One impli-
cation of Proposition 1 is thus that the trader specific component in expected excess
return is statistically distinct from the classic predictable excess returns documented in
these papers.

3.2. The speculative portfolio. Traders that have different return expectations will
hold different portfolios. We define the speculative component of trader j′s portfolio as
the bonds trader j holds because he believes average return expectations are inaccurate.
That is, the speculative component in trader j’s portfolio is the difference between trader
j’s actual portfolio and the portfolio trader j believes the average trader holds and it is
given by

αj
t − E

(∫
αi

tdi | Ω
j
t

)
= Σ−1rxE

[(
rxt+1 −

∫
E
(
rxt+1 | Ωi

t

)
di

)
| Ωj

t

]
. (3.9)

The speculative component in trader j’s portfolio is thus the (covariance weighted)
difference between trader j’s expected returns and the returns that trader j believes
the average trader expects to earn on bonds. If all other traders shared trader j’s
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expectations, bond prices would adjust until all traders, including trader j, would hold
the average portfolio. Trader j thus owns some bonds only because he believes that the
average, or market, expectations about bond returns are incorrect.

3.3. Speculation, bond prices and public information. When aggregated, the
speculative behaviour of individual traders affects the demand for bonds, and in exten-
sion, bond prices. Above, we defined the speculative portfolio in terms of differences
in one-period return expectations which depend on the expected next period price. Of
course, the next period price will also be partly determined by speculative behavior, and
expectations about the price further into the future, and so on. In order to take into
account the total effect of speculation on a bond’s price, it is helpful to first define a
useful counter-factual price.

3.3.1. The consensus price. Following Allen, Morris and Shin (2006) we define the con-
sensus price pnt of an n-period bond as the price that would “reflect the ‘average opinion’
of the fundamental value of the asset properly discounted”. The consensus price is thus
the counter-factual price a bond would have, if by chance, all traders happened to share
the average trader’s period t expectations about the risk-free interest rates between pe-
riod t and t+ n− 1 and this fact was common knowledge. It can be found by replacing
the higher order expectations of the risk-free rate in (2.11) with the average trader’s first
order expectations

pnt ≡
1

2

n∑
i=2

(
σ2
i − Σi

rxµ
)
−
∫ n−1∑

k=0

E
[
rt+k | Ωj

t

]
dj − vnt . (3.10)

We use the counter-factual consensus price pnt to define the speculative component in
actual bond prices.

3.3.2. The speculative component in bond prices. The speculative component in bond
prices is the difference between the actual price and the counter-factual consensus price.
Taking the difference between (2.11) and (3.10), we get

pnt − pnt =
n−1∑
k=0

(∫
E
[
rt+k | Ωj

t

]
dj − r(k)t:t+k

)
. (3.11)

The speculative component in an n-period bond price can thus be expressed as the
difference between first and higher order expectations about future short interest rates.1

It is straightforward to show that the speculative component in bond prices must be
orthogonal to public information.

Proposition 2. The speculative term pnt −pnt is orthogonal to public information in real
time, i.e.

E [pnt − pnt | Ω
p
t ] = 0 (3.12)

Proof. In the Appendix. �

1In a different context, Bacchetta and Wincoop (2006) shows that a similar term (which they label
the “higher order wedge”) can be expressed as an average expectation error of the innovations to the
fundamental process in their model.
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While the formal proof of Proposition 2 is given in the Appendix, the logic is simple
and intuitive. The speculative component (3.11) consists of higher order expectations
errors about the risk-free interest rate, that is, predictions about other traders’ prediction
errors. By definition, the public information set is available to all traders. Clearly, it is
not possible for an individual trader to predict the errors that other traders are making
by using information that is available also to them. The speculative component in a
bond’s price must therefore be orthogonal to public information available in real time.

Allen, Morris and Shin (2006) argue that with privately informed traders, asset prices
may display “drift”, i.e. slow adjustment to shocks with several small price changes
in the same direction. While this is true if one conditions on the actual value of the
fundamental, Banerjee, Kaniel and Kramer (2009) show in a 3 period model that het-
erogenous information is not sufficient to generate price drift when drift is defined as
future price changes being predictable based on past price changes. Their result is a
manifestation of a more general implication of rational expectations that is used in the
proof of Proposition 2. Heterogenous information cannot generate any phenomena that
is predictable conditional on information that is publicly available in real time such as
a past prices. If it was possible to predict such phenomena using public information, it
would imply that agents could predict other agents’ mistakes based on information that
is available also to all other agents.

That the speculative component in bond prices must be orthogonal to public informa-
tion is thus a consequence of that traders form rational, model consistent expectations.
This makes the speculative component derived here different from the speculative com-
ponent in the difference-in-beliefs model of Xiong and Yan (2010). In their model, traders
are boundedly rational and do not condition on bond prices when they form expectations
about future bond prices. To an outside econometrician, the speculative component in
their model looks like classical risk premia, i.e. it makes excess returns predictable based
on current bond yields. Indeed, Xiong and Yan proposes differences-in-beliefs as an al-
ternative explanation to classical risk premia for why excess bond returns are predictable
based on past bond prices. In their model, there may thus be money left on the table
that an agent using a simple forecasting model could exploit.

While a set up with boundedly rational agents who agree-to-disagree can capture
qualitative implications of heterogenous beliefs, it is a less appealing approach to use
for empirical work. Arguably, speculation would be an implausible explanation of bond
yield dynamics if it could only be quantitatively important if it also implied large, but
unexploited, profit opportunities from running predictability regressions. Because the
traders in our model use information in bond prices efficiently, an outside econometrician
conditioning on only bond prices would make smaller profits than the agents in our
model. That agents form model consistent expectations and use the information in bond
prices efficiently thus allows us to quantify the importance of speculative dynamics, while
making sure that there are no arbitrage opportunities from conditioning on prices left
unexploited.
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3.4. Decomposing bond prices. There exists a very large empirical term structure
literature that implicitly or explicitly decomposes long-term interest rates into expec-
tations about future risk-free short interest rates and risk-premia, e.g. Cochrane and
Piazzesi (2008) and Joslin, Singleton and Zhu (2011). The premise for these type of
two-way decompositions is that risk premia and expectations about future risk free in-
terest rates are sufficient to completely account for the yield-to-maturity of a bond.
However, heterogeneous information introduces a third component to bond yields due
to speculative behaviour by traders.

Add and subtract the consensus price (3.10) from the right hand side of the price of
an n-period bond (2.11) and rearrange to get

pnt =
n−1∑
k=0

∫
E
[
rt+k | Ωj

t

]
dj︸ ︷︷ ︸

Average 1st order short−rate expectations

(3.13)

+
n−1∑
k=0

(∫
E
[
rt+k | Ωj

t

]
dj − r(k)t:t+k

)
︸ ︷︷ ︸

Speculative component

+
1

2

n∑
i=2

(
σ2
i − Σi

rxµ
)
− vnt︸ ︷︷ ︸

Common risk premia

The price of a long-maturity bond can thus be expressed as the sum of average first
order expectations about future risk-free short rates, a speculative component due to
higher order prediction errors and a risk-premia component common to all traders. From
Proposition 2 we know that the speculative component must be orthogonal to public
information in real time. The speculative component is thus statistically distinct from
both common risk premia and first order expectations about future risk-free rates.

In a model with perfect or common information, the speculative component would be
zero at all times and bond prices would then be a function only of common short rate
expectations and risk premia. The speculative component would also be zero if there
were no secondary markets for trading bonds. In the absence of secondary markets,
bonds can only be purchased when they are issued and must then be held until maturity.
In such a setting, the expectation of other traders’ expectations would not matter for
the equilibrium price, since the price of a zero coupon bond at maturity is simply its
face value, which is known to all traders and does not depend on the expectations of
other traders. The new dynamics introduced to the term structure by heterogeneous
information sets are thus dependent on the fact that long maturity bonds can be traded
in secondary markets.

This ends the theoretical part of the paper. Before turning to the data, we can
summarize our findings so far. With heterogeneous information sets, individual traders
can identify and take advantage of predictable excess returns that would be absent in a
model with only common information. We also demonstrated that the new bond price
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dynamics introduced by speculative behavior must be orthogonal to public information.
This has an interesting empirical implication: Speculative dynamics cannot be detected
using real time public data. However, as econometricians we can use public information
from periods t + s : s > 0 to extract an estimate of the speculative component in bond
yields in period t. To do so, we need to specify explicit processes for the risk-free short
rate, bond supply and traders’ information sets.

4. Empirical Specification

Above, bond prices were derived as functions of higher order expectations of future
short rates. In order to have an operational model that we can use to quantify the
implications of heterogenous information, we here specify explicit processes for the short
rate, the supply of long maturity bonds and the information sets of the traders. In this
section we also describe how the model can be solved and estimated.

4.1. The short rate and the exogenous factors. The short interest rate rt is an
affine function of a vector of exogenous latent factors xt

rt = δ0 + δxxt (4.1)

where the factors follow the vector autoregressive process

xt = Fxt−1 + Cut : ut ∼ N(0, I). (4.2)

We will normalize the short rate and factor processes by assuming that δx is a vector of
ones, F is a diagonal matrix with the ith diagonal element denoted fi and C is a lower
triangular matrix with typical element cij. Normalizing F and C to be diagonal and
lower triangular does not restrict the dynamics of rt.

In the estimated model, xt is a four dimensional vector. This gives a sufficiently
high dimensional latent state to make the filtering problem of traders non-trivial, while
keeping the model computationally tractable.

4.2. Parameterizing bond supply. The bond supply distribution (2.6) is parameter-
ized as follows. The mean supply vector µ has a typical element µn given by µλn. The
parameter λ governs how the average supply of bonds changes with maturity n. With
λ > 1, supply increases with maturity, and conversely, λ < 1 implies that average supply
decreases with maturity.

The matrix V, i.e. the square root of the covariance of the supply shocks vt, is diagonal
with the nth diagonal element given by σn−1 This parameterization implies that the
standard deviation of the direct effect of supply shocks on bond yields is constant across
maturities and that supply shocks are independent across maturities. These restrictions
are imposed in order to economize on the number of free parameters but imply small
costs in terms of fit.
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4.3. Traders’ information sets. All traders observe a vector of public signals con-
taining the current short rate rt and bond yields of maturity 2, 3, ..., n collected in the
vector yt. Heterogeneous information is introduced through trader-specific signals about
the latent factors xt. The vector of private signals zj

t observed by trader j is specified as

zj
t = xt +Qζjt : ζjt ∼ N (0, I4) (4.3)

where Q is a diagonal matrix with the ith diagonal element denoted qi. Each element in
the signal vector is thus the sum of the true factor and an idiosyncratic noise component.
The noise is uncorrelated across signals and time.

The vector sjt defined as

sjt =
[

zj′
t rt y′t

]′
(4.4)

then contains all the signals that trader j observes in period t. Trader j’s information
set in period t also includes all previous signals

Ωj
t =

{
sjt ,Ω

j
t−1
}

(4.5)

and traders thus condition their expectations on the entire history of observed signals.

4.4. The law of motion of the state. When traders have heterogeneous information
sets, it becomes optimal for them to form expectations about other traders’ expectations.
Natural representations of the state in this class of models tend to be infinite.2 The model
is solved using the method proposed in Nimark (2011). The equilibrium law of motion
for the (finite dimensional) state Xt is of the form

Xt = MXt−1 +Net. (4.6)

where the state vector Xt is given by the hierarchy of higher order expectations of the
exogenous factors xt

Xt ≡
[

x
(0)′
t x

(1)′
t · · · x

(k)′
t

]′
(4.7)

where the k order expectations is defined recursively as

x
(k)
t ≡

∫
E
[
x
(k−1)
t | Ωj

t

]
dj (4.8)

starting from x
(0)
t ≡ xt. The solution method in Nimark (2011) relies on the fact that

the impact of higher order expectations on bond prices decreases “fast enough” in the
order of expectation, and that the variance of higher order expectations is bounded by
the variance of the true factors. Together, these facts imply that the equilibrium rep-
resentation can be approximated with a state vector that contains only a finite number
of higher order expectations of the factors. The integer k is the maximum order of
expectation considered and can be chosen to achieve an arbitrarily close approximation
in the limit as k →∞. In the estimated model, k = 40.

The vector et contains all the aggregate shocks that affect the extended state Xt and
includes both the factor shocks ut and the supply shocks vt. The supply shocks do not
directly affect the factors xt but they do affect traders’ (higher order) expectations about
xt since traders use bond yields to extract information about xt.

2See Townsend (1983), Sargent (1991) and Makarov and Rytchkov (2012).
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Common knowledge of the model among traders is used to pin down the law of motion
for Xt, that is, to find M and N in (4.6). The logic is as follows: As usual in ratio-

nal expectations models, first order expectations x
(1)
t are optimal, i.e. model consistent

estimates of the actual factors xt. The knowledge that other traders have model consis-
tent expectations allow traders to treat average first order expectations as a stochastic
process with known properties when they form second order expectations. Common

knowledge of the model thus implies that second order expectations x
(2)
t are optimal

estimates of x
(1)
t given the law of motion for x

(1)
t . Imposing this structure on all orders

of expectations allows us to find the law of motion for the complete hierarchy of expec-
tations as functions of the structural parameters of the model. The Appendix describes
how to find the law of motion for the state in practice.

The state vector Xt is high dimensional, but by itself, this does not increase our
degrees of freedom in terms of fitting bond yields. In fact, because the endogenous

state variables x
(k)
t are rational expectations of the lower order expectations in x

(k−1)
t ,

the matrices M and N in the law of motion (4.6) are completely pinned down by the
parameters of the process governing the true exogenous factors xt and the precision of
traders’ information sets.

4.5. Bond prices and the state. For a given law of motion (4.6), bond prices can be

derived using the average expectation operator H : Rk+1 → Rk+1 that annihilates the
lowest order expectation of a hierarchy so that

x
(1)
t

x
(2)
t
...

x
(k+1)
t

 = H


x
(0)
t

x
(1)
t
...

x
(k)
t

 (4.9)

and where x
(k)
t = 0 : k > k. The average (first order) expectation about the state in

period t is thus given by HXt. The average expectation in period t of what the state
will be in period t+ 1 is thus given by MHXt. Combing the operator H that increases
the order of expectations by one step with the matrix M from the law of motion (4.6)
that moves expectations one step forward in time, allows us to compute the k order
expectation of the short rate in period t+ k as

r
(k)
t:t+k =

[
δx 0

]
(MH)n−1Xt. (4.10)

Substituting (4.10) into the bond pricing equation (2.11) then gives

pnt =
1

2

n∑
i=2

(
σ2
i − Σi

rxµ
)
− nδ0 −

n−1∑
s=0

[
δx 0

]
(MH)sXt − vnt (4.11)

The matrix M governs the actual dynamics of rt while bonds are priced as if Xt was
observed by all traders and followed a process governed by MH. The matrices M and
MH are thus analogous to the “physical” and “risk neutral” dynamics in a standard
no-arbitrage model, though the interpretation is different.
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4.6. The estimated state space system. The state equation (4.6) and the bond price
equation (4.11) can be combined into a state space system of the form

Xt = MXt−1 +Net (4.12)

yt = A+BXt +Rvt. (4.13)

Combining the fact that ynt = −n−1pnt with (4.11) implies that the rows of A and B that
correspond to the n period bond yield in the measurement equation are given by

An = −n−11

2

n∑
i=2

(
σ2
i − Σi

pµ
)

+ δ0 (4.14)

Bn = n−1
n−1∑
s=0

[
δx 0

]
(MH)s . (4.15)

The vector of parameters to be estimated is denoted θ ≡ {F,C,Q, δ0,µ, λ, σv} and
consists of a total of 22 parameters. Evaluating the log likelihood function for the state
space system (4.12) - (4.13) allows us to form a posterior estimate for θ. The yields
used for estimation are the 1-, 2-, 3-, 4- and 5-year interest rates on US Treasuries taken
from the CRSP data base. The sample period runs from July 1952 to January 2013 and
contains 727 monthly observations.

We use uniform priors on all model parameters. The Survey of Professional Fore-
casters documents substantial disagreement of interest rate forecasts among survey re-
spondents and the average cross-sectional dispersion of responses of one-quarter-ahead
forecasts of the Federal Funds Rate is about 40 basis points in the 1980-2014 sample.
To take this evidence into account, an informative prior is used on the model implied
one-month-ahead forecast dispersion. The prior distribution of the standard deviation of
the cross-sectional forecast dispersion is centered around 20 basis points with a standard
deviation of 5 basis points. This ensures that a low posterior probability is associated
with parameterizations that imply either counter-factually small or implausibly large
degrees of forecast dispersion among the traders in the model.

The posterior parameter distributions was generated from 200 000 draws from an
Adaptive Metropolis algorithm (see Haario, Saksman and Tamminen 2001), initialized
from a parameter vector found by maximizing the posterior using the simulated anneal-
ing maximizer of Goffe (1996). The results reported in the next section are based on the
last 100 000 draws.
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Table 1
Posterior Parameter Estimates 1952:M7-2013:M1

θ Mode θ̂ Prior dist. Posterior 2.5%-97.5%
Short rate process

δ0 0.059 U (0,∞) 0.058 - 0.061

f1 0.99 U (0, 0.999) 0.98 - 0.99

f2 0.96 U (0, 0.999) 0.95 - 0.98

f3 0.70 U (0, 0.999) 0.67-0.72

f4 0.022 U (0, 0.999) 0.020-0.027

c11 0.012 U (0,∞) 0.011- 0.013

c22 0.0037 U (0,∞) 0.0032 - 0.0038

c33 0.012 U (0,∞) 0.010 - 0.013

c44 0.010 U (−∞,∞) 0.0094-0.013

c21 -0.0015 U (−∞,∞) (−0.0017)-(−0.0013)
c31 -0.0019 U (−∞,∞) (−0.0020)-(−0.0090)
c32 -0.0045 U (−∞,∞) (−0.0049)-(−0.0043)
c41 0.00026 U (−∞,∞) 0.00024-0.00034

c42 -0.020 U (−∞,∞) (−0.021)− (−0.0019)
c43 0.0067 U (−∞,∞) 0.0066 - 0.0068

Noise in private signals

q1 0.011 U (0,∞) 0.010 -0.012

q2 0.015 U (0,∞) 0.013-0.017

q3 0.0027 U (0,∞) 0.0025-0.0028

q4 0.0014 U (0,∞) 0.0013-0.0016

Bond supply

µ 0.50 U (0,∞) 0.49 - 0.51

λ 0.94 U (0,∞) 0.94-0.96

σv 0.0086 U (0,∞) 0.0082 - 0.0088

Prior and posterior distributions of model parameters estimated on a monthly sample of 1, 2, 3, 4 and 5 year bond yields

from 1952:M7-2013:M1.

5. Empirical results

Table 1 reports the posterior estimates of the model parameters. The mode θ̂ is the
parameter vector from the Markov chain that achieves the highest posterior likelihood.
All parameters appear to be well-identified.

5.1. Model fit. Before discussing the empirical importance of the speculative motive,
we assess how the model fits bond yields as well as how well it fits the cross-sectional
dispersion of expectations documented in the Survey of Professional Forecasters.

Figure 1 illustrates the model implied unconditional yields together with the sample
counterparts. The model fits unconditional yields well. At the posterior mode, the
unconditional 1 year yield is 4.8 per cent and the unconditional 5-year yield is 6.3 per
cent, to be compared with the respective sample means of 5.1 and 5.7 per cent. At the
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Figure 1. Unconditional yields from model (posterior median, solid blue
line and 95 per cent probability interval, dotted lines) and data (solid grey
line).

short end, the sample mean is well within the 95 per cent posterior probability interval
but the model slightly over-predicts unconditional long yields. The upward slope is
driven by the covariance structure of conditional returns. The posterior mode of λ is
0.94. A value of λ smaller than 1 implies that the average supply of bonds is decreasing
in maturity which is consistent with the data.3

To evaluate the cross-sectional fit of term structure models, it is common to compute
the standard deviation of pricing errors, i.e. the standard deviation of the difference
between the arbitrage free yields implied by the model and the observed yields in the
sample. For instance, Dai and Singleton (2000) report the standard deviation of the
pricing errors for various affine term structure models ranging from 9.6 to 16.5 basis
points across models and yields. In models with a lower number of factors than the
number of yields used in estimation, such pricing errors are necessary to avoid stochastic
singularity. Our bond pricing model provides a probabilistic description of the entire
term structure and observed yields are thus completely accounted for by the pricing
equation (2.11). In our framework, and unlike in many existing papers (e.g. Joslin,
Singleton and Zhu 2011 and Duffee 2011), there are thus no pricing- or measurement
errors that drive a wedge between the observed and the model implied arbitrage free
yields. The conditional fit of our model, according to such measures, is thus exact.4

3Data on outstanding maturities of US Treasuries is available at https://www.treasury.gov/resource-
center/data-chart-center/quarterly-refunding/Pages/Latest.aspx
4Note that an exact conditional fit, as defined here, does not necessarily imply a good fit in the statistical
sense. Instead, it simply means that the measurement equation used in estimation coincides with the
model implied pricing equation.
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The bond supply shocks in our model allow us to estimate the model with a larger
number of yields than the number of latent factors. However, unlike the pricing errors
used in Duffee (2011), the supply shocks in our model are priced. The supply shocks
affect bond prices through two distinct channels. First, because traders require higher
expected returns as compensation for absorbing more risky bonds in their portfolios,
prices fall in response to an increase in supply. Second, the supply shocks contribute to
the conditional variance of returns in the bond pricing equation (2.7), making average
bond prices lower than they would otherwise be.

Another difference between our supply shocks and the commonly used pricing errors
arises because traders in our model update their expectations about the state Xt after
observing bond yields. Since the supply shocks affect bond yields, supply shocks affect
traders’ (higher order) expectations about the persistent latent factors xt. So while
supply shocks are independent across time and maturities, a supply shock to a single
maturity bond has persistent effects on the entire cross-section of bond yields through its
effect on agents’ state estimates. The supply shocks thus have quite different observable
implications compared to classical white noise pricing errors. Hamilton and Wu (2011)
argue that the statistical assumption of i.i.d. white noise measurement errors in affine
term structure models can be rejected. Because a single supply shock have persistent
effects on yields across all maturities, our model is not subject to Hamilton and Wu’s
(2011) critique.

Because we allow for heterogeneously informed traders our model can, in addition to
fitting bond yields, potentially also fit the measured dispersion of interest rate forecasts.
In the difference-in-beliefs models of Xiong and Yan (2009), Buraschi and Jiltsov (2006)
and Buraschi and Whelan (2016), there are two distinct groups of agents. While the
beliefs across the two groups differ, within a group all agents hold the same beliefs.
This structure implies that the cross-sectional distributions of forecasts in these models
have positive mass only at two points of the support. In our model, the cross-sectional
distribution of traders’ expectations is Gaussian and therefore more closely resembles
the distribution of survey responses. This makes it straightforward to compare our
model’s predictions for traders’ forecast disagreement to survey data, such as the Survey
of Professional Forecasters.

At the posterior mode, the model implied cross-sectional dispersion of forecasts across
the traders is approximately 10 basis points. The dispersion is neither too large nor too
small to appear a priori unreasonable and it is somewhat lower than the dispersion in
the Survey of Professional Forecasters. One possible interpretation of this result is that
traders in reality are better and more uniformly informed than survey respondents and
this may be inferable from bond yield dynamics.

5.2. Historical decomposition of bond yields. Proposition 2 above established that
the speculative term in the price of a bond can be expressed as a higher order prediction
error that is orthogonal to public information. Nevertheless, as econometricians, we can
quantify this term using public bond price data since the period t higher order prediction
error is only orthogonal to information known to all traders up to period t. Since ex
post, we can use the full sample and exploit information for t + s : s > 0 to back out
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Figure 2. Historical decomposition of 5 year yield, median (solid) and
95% probability interval (dotted).

information about the higher order prediction error in period t, we can form an estimate
of the speculative component.

The procedure is as follows. For a given parameter vector θ, the Kalman simulation
smoother can be used to draw from the smoothed state distribution p

(
XT | yT , θ

)
(e.g.

Durbin and Koopman 2002). To construct the posterior distribution of the state XT ,
draw repeatedly from the posterior parameter distribution p

(
θ | yT

)
and for each draw of

θ generate a draw from the conditional state distribution p
(
XT | yT , θ

)
. The speculative

term in an n period bond yield, defined as −n−1 (pnt − pnt ) , can be expressed as a linear
function of the state Xt. The simulated distribution of the state can then be used to
compute the implied posterior distribution of the speculative component in bond yields.
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Figure 3. Historical decomposition of 5 year yield, median (solid) and
95% probability interval (dotted).

Agents’ average first order expectations of future risk-free rates are also linear func-
tions of the state. Once we have a posterior distribution of the state we can thus
construct a posterior distribution of the decomposition (3.13) and quantify how much
the terms due to average first order expectations about future risk free rates, common
risk premia and the speculation each contributed to bond yields over the sample period.
Figure 2 and Figure 3 illustrate this decomposition for 1- and 5-year bond yields.

As in standard models, most of the variation in bond yields is explained by variation
in expected future risk-free rates. Risk premia are positive on average and most volatile
around the early 1980s for both the 1- and 5-year yield.
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The speculative terms are positively correlated across maturities and more volatile in
the 5-year bond than in the 1-year bond. The largest variations in the speculative term
occur around 1980 when the speculative component for the 5-year bond contributes 120
negative basis points to the 5-year yield. This period coincides with the so-called Volcker
disinflation when the then Federal Reserve chairman Paul Volcker raised interest rates
sharply to bring inflation under control, causing a recession, see for instance the account
in Goodfriend and King (2005). A negative speculative component indicates that traders
believed that other traders underestimated future short rates. Stated differently, the
episode around 1980 during which the speculative component is large and negative was
a period when individual traders perhaps believed that other traders attached too much
credibility to chairman Volcker’s disinflation policy and were individually more sceptical
about the probability of his eventual success.

In absolute terms, the speculative term was largest in the early 1980s. However, as
a fraction of the total yield, speculation appears to have been more important in the
last decade. In 2011, the mode of the estimate of the speculative term reached 40 basis
points at a time when 5-year yields were around 3 per cent.

5.3. Speculation and the expectations hypothesis. One way to think of the well-
known failure of the expectations hypothesis is in terms of a yield decomposition: If
expectations of future short-rates are not sufficient to explain the variation in bond
yields, the expectations hypothesis fails. In this sense, the speculative component helps
to explain the failure of the expectations hypothesis since it provides a second wedge, in
addition to classical risk-premia, between bond yields and expectations of future short
rates.

A second way to think about the failure of the expectations hypothesis is in terms
of excess returns being predictable, which is another way of stating that expectations
of short-rates are not enough to explain bond yields. In this sense, the speculative
component does not help explaining the well-documented empirical regularity that excess
returns can be predicted conditional on the current yield curve. This is so because the
speculative component must be orthogonal to publicly available information in real time.

Singleton (2006) points out that violations of the expectation hypothesis in US data
are most pronounced when the period 1979-1983 is included in the sample. Risk-premia
based explanations of this episode emphasize that the early 1980s was a period when
traders demanded either more compensation to hold a given amount of risk because of the
recession, or when the amount of risk was perceived to be higher than usual because of
more volatile interest rates. This is also the case for our model, though it abstracts from
persistent variation in common risk premia, which may be a source of misspecification.
One concern might be that because of the restrictive way that common risk premia is
introduced, the model here simply relabels some of what in reality is risk-premia as
speculation. However, while the early 1980s are associated with large movements in
both risk-premia and speculation, the two are not observationally equivalent. The fact
that speculative dynamics must be orthogonal to public information in real time makes
it econometrically distinct from other sources of time variation in bond yields.
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Figure 4. Relative standard deviation of speculative term and yields
across maturities. Median (solid) and 95% probability interval (dotted).

Barillas and Nimark (2016) presents an empirically more flexible, but more reduced
form SDF based no-arbitrage model of the term structure that also allows for heteroge-
nous information. That model abstracts from agents’ portfolio decisions but allows for
richer dynamics of risk premia and nests a standard three factor affine model. The
empirical importance of speculative dynamics according to that model is quantitatively
similar to what we find here. That the models agree on the quantitative importance
of speculative dynamics, despite being derived from very different principles, should
increase our confidence in the results.

5.4. Speculation and yield volatility. One way to illustrate the quantitative impor-
tance of the speculative term in bond yields of different maturities is to compute its
standard deviation relative to the standard deviation of yields. Figure 4 displays the
ratio of the standard deviation of the speculative component and bond yields across the
yield curve. At the median, the standard deviation of the speculative component relative
to the standard deviation of the yield increases from just below 10 percent for 1-year
bonds to more than 20 percent for the 5-year bond. The speculative term thus accounts
for a substantial fraction of the variation in long bond yields. The fact that speculative
dynamics appear to be relatively more important for longer maturities may also help
explain the evidence in Gürkaynak, Sack and Swanson (2005), who argue that current
macro models of the term structure have trouble explaining the “excess” variability of
long bond yields. Embedding a heterogeneous information structure in a macro model
may improve these models’ ability to match the variance of long term yields.

5.5. Trading volume and speculative portfolios. Unlike existing empirical term
structure models that rely on no-arbitrage and representative agent assumptions, our



SPECULATION AND THE TERM STRUCTURE OF INTEREST RATES 25

model can be used to study trading volume. Trading volume in our model occurs for
two distinct reasons. First, different traders receive different information and therefore
have different expectations about future returns. Traders that become relatively more
pessimistic will then sell bonds to traders that become relatively more optimistic. Sec-
ond, random changes in supply require traders to adjust their portfolios for markets to
clear.

We define trading volume V n
t of an n period bond as in He and Wang (1995)

V n
t =

1

2

∫ ∣∣αn,j
t − α

n+1,j
t−1

∣∣ dj +
1

2

∣∣vnt − vn+1
t−1
∣∣ . (5.1)

where αn,j
t is the nth element of αj

t , i.e. the share of n-period bonds in trader j’s portfolio.
vnt is the random component of the supply of n-period bonds in period t . We can use
(5.1) to compute the model implied trading volume at the posterior mode.

The average trading volume is u-shaped in maturities, with higher trading volume for
very short and for medium to long maturity bonds. The bond maturity with the lowest
trading volume is the 9 month bond. To get a sense of the magnitude of trading volume
relative to supply, we can divide average volume with the average supply of bonds to
get a measure of turnover. Turnover is increasing in maturity, starting from about 18
per cent for 1 year bonds and reaching about 50 per cent for 3 year bonds. Turnover is
substantially higher for 5 year bonds, with a trading volume of more than double the
average supply of bonds.

SIFMA (2016) provides data on primary dealer trading volume of Treasuries from 2005
to 2016. The data available is not disaggregated enough to compute turnover for specific
maturities, but the average monthly trading volume of Treasuries with a maturity of less
than 5 years is on the order of about 80 per cent of the total (value weighted) amount of
bonds outstanding. The turnover implied by the model is thus similar in magnitude to
that in the data if we average turnover across maturities, but there are several reasons
to be cautious when comparing the quantitative volume predictions of the model to the
volume data from SIFMA.

First, while there is good data available on the daily trading volume among primary
dealers, the data does not include trading among non-primary dealers. The SIFMA
data thus likely understates the total trading volume of Treasuries. Second, the data
that is available refers to daily trading volumes and the monthly averages are computed
by summing daily volumes over trading days, making it not directly comparable to
the predictions from a monthly frequency model. Third, bond supply in the model
corresponds more closely to the effective float of bonds that are available for trade
rather than the total number of bonds outstanding, which would then tend to make the
model over-predict turnover.

Because bond supply is random, and in equilibrium must be absorbed into traders’
portfolios, trading volume would be positive in the model even if all traders had access
to the same information. To get a measure of the model’s predictions about the relative
importance of the speculative motive for explaining trading volume, we can compare the
standard deviation of a typical trader’s actual holdings of bonds given by (2.5) with the
standard deviation of the amount he holds for speculative purposes as defined by the
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speculative portfolio (3.9). For short and long maturity bonds, the standard deviation
of the speculative holding is about 80 per cent of the standard deviation of the total
holdings. The speculative motive appears to be least important for traders’ holdings
of bonds of maturities just below 1 year, for which the variation of the speculative
component is about 35 per cent of the total variation in portfolios.

5.6. The speculative component and return predictability. In this section we
present evidence from predictive regression of excess returns on the speculative compo-
nents in bond yields. The smoothed estimates of the speculative components in period
t is by construction a function of future changes in bond yields that could not be pre-
dicted based on period t information. It would thus not be possible for the traders in
the model, nor for us as econometricians, to run these regressions in real time. However,
if traders could observe the speculative component in real time, it should help them pre-
dict excess returns. Running predictive return regressions thus allows us to test whether
the persistent latent structure of the model is consistent with the data and a failure to
find a correlation between the speculative component and future excess returns would
be a strong suggestion of a misspecified model.

Joslin, Priebsch and Singleton (2014) find that macro factors associated with inflation
expectations and industrial production, but unspanned by bond yields, help forecast ex-
cess returns. By including appropriate controls, we here also test whether the persistent
latent state of our model is simply proxying for these observed, but unspanned, macro
factors.

To these ends, we run predictive regressions of 1 year holding excess returns of a
portfolio of equally weighted 2-,3-,4- and 5-year bonds on the speculative component
in 1 year and 5 year bond yields. As controls, we include up to the first five principal
components of bond yields, the Chicago Fed National Activity Index and the median
expected price change over the next 12 months from the University of Michigan Survey
of Consumers. The data sample is from January 1978 to January 2013. The results are
reported in Table II.

Table II
Excess return predictability and the speculative term

Predictors adjusted R2

PC123 0.14

PC12345 0.20

Macro 0.22

PC12345 + Macro 0.39

Spec1 0.44

Spec5 0.31

Spec1 + Spec5 + PC12345 0.66

Spec1 + Spec5 + Macro 0.45

Spec1 + Spec5 + PC12345 + Macro 0.70

Predictive Regressions, dependent variable is the excess holding one-year return of an equally-weighted portfolio of 2-,3-,4- and

5-year bonds. P123 and P12345 refers to, respectively, the first three and first five principal components of yields. Macro contains
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the Chicago Fed National Activity Index and the Median expected price change over the next 12 months from the University of

Michigan survey of consumers. Spec1 and Spec5 are the 1 and 5-year speculative components defined as −n−1(pn
t − p̄n

t ). The

data sample is from January 1978 to January 2013.

We start by confirming some well-documented regularities. First, using only principal
components results in an adjusted R2 of excess returns of about 0.2. When we also
include the macro variables, i.e. the Chicago Fed National Activity Index and inflation
expectations from the Michigan Survey, the R2 increases to 0.39. This is in line with
the results in Joslin, Singleton and Priebsch (2014) who document that these variables
contain information that helps predict excess returns that is not spanned by the principal
components of bond yields.

The R2 increases substantially when we include the speculative components as pre-
dictors. The speculative components together with the first five principal components
achieves an R2 of 0.66. Consistent with the model, the latent factors would thus add
substantial return forecasting power, were they to be observed in real time.

Perhaps more importantly, the predictive regressions also provide strong evidence that
our latent state is not simply proxying for observed, but unspanned, macro factors. The
increase in R2 from 0.39 to 0.70 when the speculative components are added to the PCs
and macro factors demonstrates that the speculative components contain information
about future returns that is orthogonal to both the PCs and macro factors. The in-
cremental increase in forecasting power from including the speculative components is
almost as large as the total combined forecasting power of the PCs and macro factors.
The large R2 achieved when we include the speculative components in the conditioning
set also imply that our state is not spanned by the macro factors in Ludvigson and Ng
(2009), who report a maximum adjusted R2 of 0.45.

6. Conclusions

A fundamental question in finance is what the economic forces are that account for
the variation in asset prices and returns. In this paper we have argued that if agents
have access to different information, expectations about future risk-free short rates and
risk-premia may not be sufficient to explain bond yields. Instead, we proposed that a
novel speculative term, driven by heterogeneously informed traders, can account for a
substantial fraction of the variation in historical US bond yields along with the classic
terms. We also found that the speculative motive is an important driver of trading
volume.

As a theoretical contribution, we developed a tractable term structure model and used
it to demonstrate that trader specific excess returns, as well as the component in bond
prices that is due to heterogenous information, must be orthogonal to public information
in real time. This property makes the speculative component in bond prices identified
here different from the excess returns that can be predicted conditional on past bond
yields, e.g. Fama and Bliss (1987) and Campbell and Shiller (1991). The speculative
component is thus statistically distinct from the two classical components of the yield
curve: risk-premia and terms reflecting expectations about future short rates.
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Because traders in our model form rational expectations, the speculative component
estimated here is distinct not only from the classical components of the term structure,
but also from the speculative component in the difference-in-beliefs model of Xiong and
Yan (2010). They propose that speculation among boundedly rational traders can pro-
vide an alternative explanations for the widely documented time-variation in predictable
excess returns. In their model, the speculative term would to an outside econometrician
looks like classic risk-premia. From an empirical perspective, we think one appealing fea-
ture of our set-up is that speculation in our model has statistical properties that makes
it distinct from classical risk premia and thus easier to identify in the data. Another
appealing feature of our set-up is that traders use the information contained in prices
efficiently. This ensures that in our model, there are no unexploited profit opportunities
from running predictive regressions of excess returns on bond prices.

In this paper we have estimated a relatively structural model that makes explicit
assumptions about traders’ utility functions and information sets. The fact that the
speculative term must be orthogonal to public information available to traders in real
time makes it difficult, or perhaps impossible, to use less model-dependent, regression
based strategies to quantify the importance of speculation among rational traders. One
methodological contribution of the paper is thus to demonstrate how a structural ap-
proach can be used to estimate a historical time series of the effect of speculation on
bond yields using publicly available bond yield data.
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Appendix A. Proof of Proposition 2

Proposition 2 The speculative term pnt − pnt is orthogonal to public information in
real time, i.e.

E [pnt − pnt | Ωt] = 0 (A.1)

Proof. A typical element in the sum of higher order prediction errors

pnt − pnt =
n−1∑
k=0

(∫
E
[
rt+k | Ωj

t

]
dj − r(k)t:t+k

)
(A.2)

is can be written as∫
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Taking expectations of both terms conditional on Ωp
t gives

E
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)
By Definition 1 the public information set is a subset of each trader’s information set,
i.e. that Ωt ⊆ Ωj

t for each j. This fact, together with the law of iterated expectations
implies that

E
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= E (rt+k | Ωt)− E (rt+k | Ωt)

= 0

which completes the proof. �

Appendix B. Solving the model

Solving the model implies finding a law of motion for the higher order expectations
of xt of the form

Xt+1 = MXt−1 +Net (B.1)

where

Xt ≡


x
(0)
t

x
(1)
t
...

x
(k)
t

 , et =

[
ut

vt

]

That is, to solve the model, we need to find the matrices M and N as functions of
the parameters governing the short rate process, the supply of long maturity bonds
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and the idiosyncratic noise shocks. The integer k is the maximum order of expectation
considered and can be chosen to achieve an arbitrarily close approximation to the limit
as k → ∞. Here, a brief overview of the method is given, but the reader is referred to
Nimark (2011) for more details on the solution method.

First, common knowledge of the model can be used to pin down the law of motion for
the vector Xt containing the hierarchy of higher order expectations of xt. Rational, i.e.
model consistent, expectations of xt thus imply a law of motion for average expectations

x
(1)
t which can then be treated as a new stochastic process. Knowledge that other traders

are rational means that second order expectations x
(2)
t are determined by the average

across traders of the rational expectations of the stochastic process x
(1)
t . The average

third order expectation x
(3)
t is then the average of the rational expectations of the process

x
(2)
t , and so on. Imposing this structure on all orders of expectations allows us to find

the matrices M and N . How this is implemented in practice is described below.
Second, the method exploits that the importance of higher order expectations is de-

creasing in the order of expectations. This result has two components:
(i) The variances of higher order expectations of the factors xt are bounded by the

variance of the true process. More generally, the variance of k + 1 order expectation
cannot be larger than the variance of a k order expectation

cov
(
x
(k+1)
t

)
≤ cov

(
x
(k)
t

)
(B.2)

To see why, first define the average k + 1 order expectation error ζ
(k+1)
t

x
(k)
t ≡ x

(k+1)
t + ζ

(k+1)
t (B.3)

Since x
(k+1)
t is the average of an optimal estimate of x

(k)
t the error ζ

(k+1)
t must be or-

thogonal to x
(k+1)
t so that
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(k+1)
t

)
+ cov

(
ζ
(k+1)
t

)
. (B.4)

Now, since covariances are positive semi-definite we have that

cov
(
ζ
(k+1)
t

)
≥ 0 (B.5)

and the inequality (B.2) follows immediately. (This is an abbreviated description of a
more formal proof available in Nimark 2011.)

That the variances of higher order expectations of the factors are bounded is not
sufficient for an accurate finite dimensional solution. We also need (ii) that the impact
of the expectations of the factors on bond yields decreases “fast enough” in the order
of expectation. The proof of this result is somewhat involved and interested readers
are referred to the original reference.That is, to solve the model, we need to find the
matrices M,N and B as functions of the parameters governing the short rate process,
the stochastic supply shocks and the idiosyncratic noise shocks. The integer k is the
maximum order of expectation considered and can be chosen to achieve an arbitrarily
close approximation to the limit as k →∞. Here, a brief overview of the method is given,
but the reader is referred to Nimark (2010) for more details on the solution method.
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B.1. The law of motion of the state. To find the law of motion for the hierarchy
of expectations Xt we use the following strategy. For a given M,N and B in (4.12)
- (4.13) we will derive the law of motion for trader j’s expectations of Xt , denoted
Xj

t|t ≡ E
[
Xt | Ωj

t

]
. First, write the vector of signals Sj

t as a function of the state, the

aggregate shocks and the idiosyncratic shocks

Sj
t =

[
z′jt r̃t y′t

]′
(B.6)

= µS +DXt +R

 ζjt
ut

v̂t

 (B.7)

where by (4.1), (4.3), (4.14) and (4.15) µS and D are given by

µS =
[

01×4 δ0 A2 · · · An

]′
(B.8)

and

D =

 I4 0
11×4 0
B

 , B ≡ [ B′1 B′2 · · · B′n
]′

. (B.9)

The matrix R can be partitioned conformably to the idiosyncratic and aggregate shocks

R =
[
Rj RA

]
.

Trader j’s updating equation of the state Xj
t|t estimate will then follow

Xj
t|t = MXj

t|t−1 +K
(
Sj
t − µS −DMXj

t|t−1

)
(B.10)

Rewriting the observable vector Sj
t as a function of the lagged state and taking averages

across traders using that
∫
ζjt dj = 0 yields

Xt|t = MXt|t−1 +K
(
DMXt−1 + (DN +RA) et +−DMXj

t|t−1

)
(B.11)

= (M −KDM)Xt|t−1 +KDMXt−1 +K (DN +RA) et (B.12)

Appending the average updating equation to the exogenous state gives us the conjectured

form of the law of motion of x
(0:k)
t[
xt

Xt|t

]
= M

[
xt−1

Xt−1|t−1

]
+Net

where M and N are given by
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F 0
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(B.13)

N =

[
C 0
0 0

]
+

[
0

[K (DN +RA)]−

]
(B.14)

where [·]− indicates that the a last row or column has been canceled to make a the

matrix [·] conformable, i.e. implementing that x
(k)
t = 0 : k > k . The Kalman gain K in
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(B.10) is given by

K = (PD′ +NR′) (DPD′ +RR′)−1 (B.15)

P = M
(
P − (PD′ +NR′) (DPD′ +RR′)−1 (PD′ +NR′)

′)
M ′ +NN ′ (B.16)

The model is solved by finding a fixed point that satisfies (4.13), (B.13), (B.14), (B.15)
and (B.16).


